Fortinet black logo

Handbook

Addressing

6.0.0
Copy Link
Copy Doc ID 4afb0436-a998-11e9-81a4-00505692583a:309902
Download PDF

Addressing

Possible addresses:

  • IPv4 = 4,294,967,296 (over 4 billion)
  • IPv6 = 340,282,366,920,938,463,463,374,607,431,768,211,456 (over 340 undecillion - We had to look that term up. We didn’t know what a number followed by 36 digits was either)

Assuming a world population of approximately 8 billion people, IPv6 would allow for each individual to have approximately 42,535,295,865,117,200,000,000,000,000 devices with an IP address. That’s 42 quintillion devices.

There is little likelihood that you will ever need to worry about these numbers as any kind of serious limitation in addressing but they do give an idea of the scope of the difference in the available addressing.

IPv6 address syntax

Aside from the difference of possible addresses there is also the different formatting of the addresses that will need to be addressed.

A computer would view an IPv4 address as a 32 bit string of binary digits made up of 1s and 0s, broken up into 4 octets of 8 digits separated by a period “.”

Example:

10101100.00010000.11111110.00000001

To make number more user friendly for humans we translate this into decimal, again 4 octets separated by a period “.” which works out to:

172.16.254.1

A computer would view an IPv6 address as a 128 bit string of binary digits made up of 1s and 0s, broken up into 8 octets of 16 digits separated by a colon “:”

1000000000000001:0000110110111000:101011000001000:1111111000000001:0000000000000000:0000000000000000:0000000000000000:0000000000000000

To make number a little more user friendly for humans we translate this into hexadecimal, again 8 octets separated by a colon “:” which works out to:

8001:0DB8:AC10:FE01:0000:0000:0000:0000:

Because any four-digit group of zeros within an IPv6 address may be reduced to a single zero or altogether omitted, this address can be shortened further to:

8001:0DB8:AC10:FE01:0:0:0:0

or

8001:0DB8:AC10:FE01::

Addressing

Possible addresses:

  • IPv4 = 4,294,967,296 (over 4 billion)
  • IPv6 = 340,282,366,920,938,463,463,374,607,431,768,211,456 (over 340 undecillion - We had to look that term up. We didn’t know what a number followed by 36 digits was either)

Assuming a world population of approximately 8 billion people, IPv6 would allow for each individual to have approximately 42,535,295,865,117,200,000,000,000,000 devices with an IP address. That’s 42 quintillion devices.

There is little likelihood that you will ever need to worry about these numbers as any kind of serious limitation in addressing but they do give an idea of the scope of the difference in the available addressing.

IPv6 address syntax

Aside from the difference of possible addresses there is also the different formatting of the addresses that will need to be addressed.

A computer would view an IPv4 address as a 32 bit string of binary digits made up of 1s and 0s, broken up into 4 octets of 8 digits separated by a period “.”

Example:

10101100.00010000.11111110.00000001

To make number more user friendly for humans we translate this into decimal, again 4 octets separated by a period “.” which works out to:

172.16.254.1

A computer would view an IPv6 address as a 128 bit string of binary digits made up of 1s and 0s, broken up into 8 octets of 16 digits separated by a colon “:”

1000000000000001:0000110110111000:101011000001000:1111111000000001:0000000000000000:0000000000000000:0000000000000000:0000000000000000

To make number a little more user friendly for humans we translate this into hexadecimal, again 8 octets separated by a colon “:” which works out to:

8001:0DB8:AC10:FE01:0000:0000:0000:0000:

Because any four-digit group of zeros within an IPv6 address may be reduced to a single zero or altogether omitted, this address can be shortened further to:

8001:0DB8:AC10:FE01:0:0:0:0

or

8001:0DB8:AC10:FE01::