Fortinet black logo

Handbook

Configuration overview

6.0.0
Copy Link
Copy Doc ID 4afb0436-a998-11e9-81a4-00505692583a:167632
Download PDF

Configuration overview

In a hub-and-spoke configuration, VPN connections radiate from a central FortiGate unit (the hub) to a number of remote peers (the spokes). Traffic can pass between private networks behind the hub and private networks behind the remote peers. Traffic can also pass between remote peer private networks through the hub.

Example hub-and-spoke configuration

The actual implementation varies in complexity depending on:

  • Whether the spokes are statically or dynamically addressed
  • The addressing scheme of the protected subnets
  • How peers are authenticated

This guide discusses the issues involved in configuring a hub-and-spoke VPN and provides some basic configuration examples.

Hub-and-spoke infrastructure requirements

Spoke gateway addressing

The public IP address of the spoke is the VPN remote gateway as seen from the hub. Statically addressed spokes each require a separate VPN Phase 1 configuration on the hub. When there are many spokes, this becomes rather cumbersome.

Using dynamic addressing for spokes simplifies the VPN configuration because then the hub requires only a single Phase 1 configuration with “dialup user” as the remote gateway. You can use this configuration even if the remote peers have static IP addresses. A remote peer can establish a VPN connection regardless of its IP address if its traffic selectors match and it can authenticate to the hub. See Dynamic spokes configuration example for an example of this configuration.

Protected networks addressing

The addresses of the protected networks are needed to configure destination selectors and sometimes for security policies and static routes. The larger the number of spokes, the more addresses there are to manage. You can

  • Assign spoke subnets as part of a larger subnet, usually on a new network

or

  • Create address groups that contain all of the needed addresses

Using aggregated subnets

If you are creating a new network, where subnet IP addresses are not already assigned, you can simplify the VPN configuration by assigning spoke subnets that are part of a large subnet.

Aggregated subnets

All spokes use the large subnet address, 10.1.0.0/16 for example, as:

  • The IPsec destination selector
  • The destination of the security policy from the private subnet to the VPN (required for policy-based VPN, optional for route-based VPN)
  • The destination of the static route to the VPN (route-based)

Each spoke uses the address of its own protected subnet as the IPsec source selector and as the source address in its VPN security policy. The remote gateway is the public IP address of the hub FortiGate unit.

Using an address group

If you want to create a hub-and-spoke VPN between existing private networks, the subnet addressing usually does not fit the aggregated subnet model discussed earlier. All of the spokes and the hub will need to include the addresses of all the protected networks in their configuration.

On FortiGate units, you can define a named firewall address for each of the remote protected networks and add these addresses to a firewall address group. For a policy-based VPN, you can then use this address group as the destination of the VPN security policy.

For a route-based VPN, the destination of the VPN security policy can be set to All. You need to specify appropriate routes for each of the remote subnets.

Authentication

Authentication is by a common pre-shared key or by certificates. For simplicity, the examples in this chapter assume that all spokes use the same pre-shared key.

Configuration overview

In a hub-and-spoke configuration, VPN connections radiate from a central FortiGate unit (the hub) to a number of remote peers (the spokes). Traffic can pass between private networks behind the hub and private networks behind the remote peers. Traffic can also pass between remote peer private networks through the hub.

Example hub-and-spoke configuration

The actual implementation varies in complexity depending on:

  • Whether the spokes are statically or dynamically addressed
  • The addressing scheme of the protected subnets
  • How peers are authenticated

This guide discusses the issues involved in configuring a hub-and-spoke VPN and provides some basic configuration examples.

Hub-and-spoke infrastructure requirements

Spoke gateway addressing

The public IP address of the spoke is the VPN remote gateway as seen from the hub. Statically addressed spokes each require a separate VPN Phase 1 configuration on the hub. When there are many spokes, this becomes rather cumbersome.

Using dynamic addressing for spokes simplifies the VPN configuration because then the hub requires only a single Phase 1 configuration with “dialup user” as the remote gateway. You can use this configuration even if the remote peers have static IP addresses. A remote peer can establish a VPN connection regardless of its IP address if its traffic selectors match and it can authenticate to the hub. See Dynamic spokes configuration example for an example of this configuration.

Protected networks addressing

The addresses of the protected networks are needed to configure destination selectors and sometimes for security policies and static routes. The larger the number of spokes, the more addresses there are to manage. You can

  • Assign spoke subnets as part of a larger subnet, usually on a new network

or

  • Create address groups that contain all of the needed addresses

Using aggregated subnets

If you are creating a new network, where subnet IP addresses are not already assigned, you can simplify the VPN configuration by assigning spoke subnets that are part of a large subnet.

Aggregated subnets

All spokes use the large subnet address, 10.1.0.0/16 for example, as:

  • The IPsec destination selector
  • The destination of the security policy from the private subnet to the VPN (required for policy-based VPN, optional for route-based VPN)
  • The destination of the static route to the VPN (route-based)

Each spoke uses the address of its own protected subnet as the IPsec source selector and as the source address in its VPN security policy. The remote gateway is the public IP address of the hub FortiGate unit.

Using an address group

If you want to create a hub-and-spoke VPN between existing private networks, the subnet addressing usually does not fit the aggregated subnet model discussed earlier. All of the spokes and the hub will need to include the addresses of all the protected networks in their configuration.

On FortiGate units, you can define a named firewall address for each of the remote protected networks and add these addresses to a firewall address group. For a policy-based VPN, you can then use this address group as the destination of the VPN security policy.

For a route-based VPN, the destination of the VPN security policy can be set to All. You need to specify appropriate routes for each of the remote subnets.

Authentication

Authentication is by a common pre-shared key or by certificates. For simplicity, the examples in this chapter assume that all spokes use the same pre-shared key.