Fortinet black logo

Handbook

Configuring L2TP VPNs

6.0.0
Copy Link
Copy Doc ID 4afb0436-a998-11e9-81a4-00505692583a:539712
Download PDF

Configuring L2TP VPNs

This section describes how to configure a FortiGate unit to establish a Layer Two Tunneling Protocol (L2TP) tunnel with a remote dialup client. The FortiGate implementation of L2TP enables a remote dialup client to establish an L2TP tunnel with the FortiGate unit directly.

According to RFC 2661, an Access Concentrator (LAC) can establish an L2TP tunnel with an L2TP Network Server (LNS). In a typical scenario, the LAC is managed by an ISP and located on the ISP premises; the LNS is the gateway to a private network. When a remote dialup client connects to the Internet through the ISP, the ISP uses a local database to establish the identity of the caller and determine whether the caller needs access to an LNS through an L2TP tunnel. If the services registered to the caller indicate that an L2TP connection to the LNS is required, the ISP LAC attempts to establish an L2TP tunnel with the LNS.

A FortiGate unit can be configured to act as an LNS. The FortiGate implementation of L2TP enables a remote dialup client to establish an L2TP tunnel with the FortiGate unit directly, bypassing any LAC managed by an ISP. The ISP must configure its network access server to forward L2TP traffic from the remote client to the FortiGate unit directly whenever the remote client requires an L2TP connection to the FortiGate unit.

When the FortiGate unit acts as an LNS, an L2TP session and tunnel is created as soon as the remote client connects to the FortiGate unit. The FortiGate unit assigns an IP address to the client from a reserved range of IP addresses. The remote client uses the assigned IP address as its source address for the duration of the connection.

More than one L2TP session can be supported on the same tunnel. FortiGate units can be configured to authenticate remote clients using a plain text user name and password, or authentication can be forwarded to an external RADIUS or LDAP server. L2TP clients are authenticated as members of a user group.

note icon For site-to-site connections, Windows servers use IPsec encryption when you configure the VPN to connect to an L2TP server.

Traffic from the remote client must be encrypted using IPsec before it is encapsulated and routed to the FortiGate unit. Packets originating at the remote client are addressed to a computer on the private network behind the FortiGate unit. Encapsulated packets are addressed to the public interface of the FortiGate unit. See the figure below.

When the FortiGate unit receives an L2TP packet, the unit disassembles the packet and forwards the packet to the correct computer on the internal network. The security policy and protection profiles on the FortiGate unit ensure that inbound traffic is screened and processed securely.

L2TP encapsulation

FortiGate units cannot deliver non-IP traffic such as Frame Relay or ATM frames encapsulated in L2TP packets — FortiGate units support the IPv4 and IPv6 addressing schemes only

Network topology

The remote client connects to an ISP that determines whether the client requires an L2TP connection to the FortiGate unit. If an L2TP connection is required, the connection request is forwarded to the FortiGate unit directly.

Example L2TP configuration

L2TP infrastructure requirements

  • The FortiGate unit must be operating in NAT mode and have a static public IP address.
  • The ISP must configure its network access server to forward L2TP traffic from remote clients to the FortiGate unit directly.
  • The remote client must not generate non-IP traffic (Frame Relay or ATM frames).

Configuring L2TP VPNs

This section describes how to configure a FortiGate unit to establish a Layer Two Tunneling Protocol (L2TP) tunnel with a remote dialup client. The FortiGate implementation of L2TP enables a remote dialup client to establish an L2TP tunnel with the FortiGate unit directly.

According to RFC 2661, an Access Concentrator (LAC) can establish an L2TP tunnel with an L2TP Network Server (LNS). In a typical scenario, the LAC is managed by an ISP and located on the ISP premises; the LNS is the gateway to a private network. When a remote dialup client connects to the Internet through the ISP, the ISP uses a local database to establish the identity of the caller and determine whether the caller needs access to an LNS through an L2TP tunnel. If the services registered to the caller indicate that an L2TP connection to the LNS is required, the ISP LAC attempts to establish an L2TP tunnel with the LNS.

A FortiGate unit can be configured to act as an LNS. The FortiGate implementation of L2TP enables a remote dialup client to establish an L2TP tunnel with the FortiGate unit directly, bypassing any LAC managed by an ISP. The ISP must configure its network access server to forward L2TP traffic from the remote client to the FortiGate unit directly whenever the remote client requires an L2TP connection to the FortiGate unit.

When the FortiGate unit acts as an LNS, an L2TP session and tunnel is created as soon as the remote client connects to the FortiGate unit. The FortiGate unit assigns an IP address to the client from a reserved range of IP addresses. The remote client uses the assigned IP address as its source address for the duration of the connection.

More than one L2TP session can be supported on the same tunnel. FortiGate units can be configured to authenticate remote clients using a plain text user name and password, or authentication can be forwarded to an external RADIUS or LDAP server. L2TP clients are authenticated as members of a user group.

note icon For site-to-site connections, Windows servers use IPsec encryption when you configure the VPN to connect to an L2TP server.

Traffic from the remote client must be encrypted using IPsec before it is encapsulated and routed to the FortiGate unit. Packets originating at the remote client are addressed to a computer on the private network behind the FortiGate unit. Encapsulated packets are addressed to the public interface of the FortiGate unit. See the figure below.

When the FortiGate unit receives an L2TP packet, the unit disassembles the packet and forwards the packet to the correct computer on the internal network. The security policy and protection profiles on the FortiGate unit ensure that inbound traffic is screened and processed securely.

L2TP encapsulation

FortiGate units cannot deliver non-IP traffic such as Frame Relay or ATM frames encapsulated in L2TP packets — FortiGate units support the IPv4 and IPv6 addressing schemes only

Network topology

The remote client connects to an ISP that determines whether the client requires an L2TP connection to the FortiGate unit. If an L2TP connection is required, the connection request is forwarded to the FortiGate unit directly.

Example L2TP configuration

L2TP infrastructure requirements

  • The FortiGate unit must be operating in NAT mode and have a static public IP address.
  • The ISP must configure its network access server to forward L2TP traffic from remote clients to the FortiGate unit directly.
  • The remote client must not generate non-IP traffic (Frame Relay or ATM frames).