Change Log

<table>
<thead>
<tr>
<th>Date</th>
<th>Change Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 October 2014</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
Table of Contents

Change Log.. 3
Introduction... 7
Hardware acceleration overview .. 8
 Content processors (CP4, CP5, CP6 and CP8).. 8
 Determining the content processor in your FortiGate unit .. 10
 Viewing SSL acceleration status ... 10
 Disabling CP offloading ... 10
 Security processors (SPs)... 11
 SP Processing Flow ... 11
 Displaying information about security processing modules .. 12
 Network processors (NP1, NP2, NP3, NP4 and NP6)... 13
 Determining the network processors installed on your FortiGate unit 14
 How NP hardware acceleration alters packet flow .. 14
 NP processors and traffic logging and monitoring .. 15
 NP session offloading in HA active-active configuration .. 15
 Configuring NP HMAC check offloading ... 16
 Offloading NP pre-IPS anomaly detection ... 16
 Software switch interfaces and NP processors ... 17
 Configuring NP accelerated VPN encryption/decryption offloading 18
 Checking that traffic is offloaded by NP processors ... 18
 Using the packet sniffer ... 19
 Checking the firewall session offload tag ... 19
 Verifying IPsec VPN traffic offloading ... 20
 Controlling IPS NPx and CPx acceleration .. 21
 Dedicated Management CPU .. 22
NP6 Acceleration.. 23
 NP6 session fast path requirements .. 24
 Packet fast path requirements ... 25
 Mixing fast path and non-fast path traffic ... 25
 Viewing your FortiGate NP6 processor configuration ... 25
 Increasing NP6 offloading capacity using link aggregation groups (LAGs) 25
 Configuring Inter-VDOM link acceleration with NP6 processors 26
 Using VLANs to add more accelerated Inter-VDOM links ... 27
 Confirm that the traffic is accelerated ... 28
 Enabling per-session accounting for offloaded NP6 sessions ... 29
FortiGate NP6 architectures... 30
 FortiGate-500D fast path architecture .. 30
 FortiGate-1000D fast path architecture .. 31
Introduction

This document describes the hardware components that Fortinet builds into FortiGate devices to accelerate traffic through FortiGate units. Three types of hardware acceleration components are described:

- Content processors (CPs) that accelerate a wide range of security functions
- Security processors (SPs) that accelerate specific security functions
- Network processors (NPs) that offload network traffic to specialized hardware that is optimized to provide high levels of network throughput.

This is the first version of this new document. Please send comments or suggestions for improvements to techdoc@fortinet.com. We expect to publish new versions of this document in the coming weeks and months as this technology develops, as more FortiGate models with NP4 and NP6 processors released and as we get comments on the content.

This FortiOS Handbook chapter contains the following sections:

Hardware acceleration overview describes the capabilities of FortiGate content processors (CPs), security processors (SPs) and network processors (NPs). This chapter also describes how to determine the hardware acceleration components installed in your FortiGate unit and contains some configuration details and examples.

NP6 Acceleration describes the FortiGate NP6 network processor.

FortiGate NP6 architectures contains details about the network processing architectures of FortiGate units that contain NP6 processors.

NP4 Acceleration describes the FortiGate NP4 network processor.

FortiGate NP4 architectures contains details about the network processing architectures of FortiGate units that contain NP4 processors.
Hardware acceleration overview

All FortiGate models have specialized acceleration hardware that can offload resource intensive processing from main processing (CPU) resources. All FortiGate units include specialized content processors (CPs) that accelerate a wide range of important security processes such as virus scanning, attack detection, encryption and decryption. Many FortiGate models also contain security processors (SPs) that accelerate processing for specific security features such as IPS and network processors (NPs) that offload processing of high volume network traffic.

This chapter contains the following topics:

• Content processors (CP4, CP5, CP6 and CP8)
• Security processors (SPs)
• Network processors (NP1, NP2, NP3, NP4 and NP6)
• Checking that traffic is offloaded by NP processors
• Controlling IPS NPx and CPx acceleration
• Dedicated Management CPU

Content processors (CP4, CP5, CP6 and CP8)

All FortiGate units contain FortiASIC Content Processors (CPs) that accelerate many common resource intensive security related processes. CPs work at the system level with tasks being offloaded to them as determined by the main CPU. Capabilities of the CPs vary by model. Newer FortiGate units include CP8 processors. Older CP versions still in use in currently operating FortiGate models include the CP4, CP5, and CP6.

CP8 capabilities

The CP8 content processor provides the following services:

• IPS signature matching acceleration
• High performance VPN bulk data engine
 • IPSEC and SSL/TLS protocol processor
 • DES/3DES/AES in accordance with FIPS46-3/FIPS81/FIPS197
 • ARC4 in compliance with RC4
 • MD5/SHA-1/SHA256 with RFC1321 and FIPS180
 • HMAC in accordance with RFC2104/2403/2404 and FIPS198
• Key Exchange Processor support high performance IKE and RSA computation
 • Public key exponentiation engine with hardware CRT support
 • Primarily checking for RSA key generation
 • Handshake accelerator with automatic key material generation
 • Random Number generator compliance with ANSI X9.31
 • Sub public key engine (PKCE) to support up to 4094 bit operation directly
• Message authentication module offers high performance cryptographic engine for calculating SHA256/SHA1/MD5 of data up to 4G bytes (used by many applications)
• PCI express Gen 2 four lanes interface
• Cascade Interface for chip expansion
CP6 capabilities

- Dual content processors
- FIPS-compliant DES/3DES/AES encryption and decryption
- SHA-1 and MD5 HMAC with RFC1321 and FIPS180
- HMAC in accordance with RFC2104/2403/2404 and FIPS198
- IPsec protocol processor
- High performance IPsec engine
- Random Number generator compliance with ANSI X9.31
- Key exchange processor for high performance IKE and RSA computation
- Script Processor
- SSL/TLS protocol processor for SSL content scanning and SSL acceleration

CP5 capabilities

- FIPS-compliant DES/3DES/AES encryption and decryption
- SHA-1 and MD5 HMAC with RFC1321/2104/2403/2404 and FIPS180/FIPS198
- IPsec protocol processor
- High performance IPSEC Engine
- Random Number generator compliant with ANSI X9.31
- Public Key Crypto Engine supports high performance IKE and RSA computation
- Script Processor

CP4 capabilities

- FIPS-compliant DES/3DES/AES encryption and decryption
- SHA-1 and MD5 HMAC
- IPSEC protocol processor
- Random Number generator
- Public Key Crypto Engine
- Content processing engine
- ANSI X9.31 and PKCS#1 certificate support
Determined the content processor in your FortiGate unit

Use the `get hardware status` CLI command to determine which content processor your FortiGate unit contains. The output looks like this:

```
get hardware status
Model name: FortiGate-100D
**ASIC version:** CP8
ASIC SRAM: 64M
CPU: Intel(R) Atom(TM) CPU D525 @ 1.80GHz
Number of CPUs: 4
RAM: 1977 MB
Compact Flash: 15331 MB /dev/sda
Hard disk: 15272 MB /dev/sda
USB Flash: not available
Network Card chipset: Intel(R) PRO/1000 Network Connection (rev.0000)
Network Card chipset: bcm-sw Ethernet driver 1.0 (rev.)
```

The ASIC version line lists the content processor model number.

Viewing SSL acceleration status

You can view the status of SSL acceleration using the following command:

```
get vpn status ssl hw-acceleration-status
```

```
Acceleration hardware detected: kxp=on cipher=on
```

Disabling CP offloading

If you want to completely disable offloading to CP processors for test purposes or other reasons, you can do so in security policies. Here are some examples:

For IPv4 security policies.

```
config firewall policy
edit 1
  set auto-asic-offload disable
end
```

For IPv6 security policies.

```
config firewall policy6
edit 1
  set auto-asic-offload disable
end
```

For multicast security policies.

```
config firewall multicast-policy
edit 1
  set auto-asic-offload disable
end
```
Security processors (SPs)

FortiGate Security Processing (SP) modules, such as the SP3 but also including the XLP, XG2, XE2, FE8, and CE4, work at both the interface and system level to increase overall system performance by accelerating specialized security processing. You can configure the SP to favor IPS over firewall processing in hostile high-traffic environments. The following security processors are available:

- The SP3 (XLP) is built into the FortiGate-5101B and provides IPS acceleration. No special configuration is required. All IPS processing, including traffic accepted by IPv4 and IPv6 traffic policies and IPv4 and IPv6 DoS policies is accelerated by the built-in SP3 processors.
- The FMC-XG2 is an FMC module with two 10Gb/s SPF+ interfaces that can be used on FortiGate-3950B and FortiGate-3951B units.
- The FortiGate-3140B also contains a built-in XG2 using ports 19 and 20.
- The ADM-XE2 is a dual-width AMC module with two 10Gb/s interfaces that can be used on FortiGate-3810A and FortiGate-5001A-DW systems.
- The ADM-FE8 is a dual-width AMC module with eight 1Gb/s interfaces that can be used with the FortiGate-3810A.
- The ASM-CE4 is a single-width AMC module with four 10/100/1000 Mb/s interfaces that can be used on FortiGate-3016B and FortiGate-3810A units.

SP Processing Flow

SP processors provide an integrated high performance fast path multilayer solution for both intrusion protection and firewall functions. The multilayered protection starts from anomaly checking at packet level to ensure each packet is sound and reasonable. Immediately after that, a sophisticated set of interface based packet anomaly protection, DDoS protection, policy based intrusion protection, firewall fast path, and behavior based methods are employed to prevent DDoS attacks from the rest of system.

Then the packets enter an interface/policy based intrusion protection system, where each packet is evaluated against a set of signatures. The end result is streams of user packets that are free of anomaly and attacks, entering the fast path system for unicast or multicast fast path forwarding.
Displaying information about security processing modules

You can display information about installed SP modules using the CLI command

diagnose npu spm

For example, for the FortiGate-5101C:

FG-5101C # diagnose npu spm list
Available SP Modules:

<table>
<thead>
<tr>
<th>ID</th>
<th>Mode</th>
<th>Slot</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xh0</td>
<td>built-in</td>
<td>port1, port2, port3, port4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>base1, base2, fabric1, fabric2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eth10, eth11, eth12, eth13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eth14, eth15, eth16, eth17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eth18, eth19</td>
</tr>
</tbody>
</table>

You can also use this command to get more info about SP processing. This example shows how to display details about how the module is processing sessions using the syn proxy.

diagnose npu spm dos synproxy <sp_id>
This is a partial output of the command:

```
Number of proxied TCP connections :                 0
Number of working proxied TCP connections :         0
Number of retired TCP connections :                 0
Number of valid TCP connections :                   0
Number of attacks, no ACK from client :             0
Number of no SYN-ACK from server :                  0
Number of reset by server (service not supported):  0
Number of established session timeout :              0
Client timeout setting :                            3 Seconds
Server timeout setting :                            3 Seconds
```

Network processors (NP1, NP2, NP3, NP4 and NP6)

FortiASIC network processors work at the interface level to accelerate traffic by offloading traffic from the main CPU. Current models contain NP4 and NP6 network processors. Older FortiGate models include NP1 network processors (also known as FortiAccel, or FA2) and NP2 network processors.

The traffic that can be offloaded, maximum throughput, and number of network interfaces supported by each varies by processor model:

- **NP6** supports offloading of most IPv4 and IPv6 traffic, IPsec VPN encryption, CAPWAP traffic, and multicast traffic. The NP6 has a capacity of 40 Gbps through 4 x 10 Gbps interfaces or 3 x 10 Gbps and 16 x 1 Gbps interfaces. For details about the NP6 processor, see "NP6 Acceleration" on page 23 and for information about FortiGate models with NP6 processors, see “FortiGate NP6 architectures” on page 30.

- **NP4** supports offloading of most IPv4 firewall traffic and IPsec VPN encryption. The NP4 has a capacity of 20 Gbps through 2 x 10 Gbps interfaces. For details about NP4 processors, see "NP4 Acceleration" on page 39 and for information about FortiGate models with NP4 processors, see “FortiGate NP4 architectures” on page 51.

- **NP2** supports IPv4 firewall and IPsec VPN acceleration. The NP2 has a capacity of 2 Gbps through 2 x 10 Gbps interfaces or 4 x 1 Gbps interfaces.

- **NP1** supports IPv4 firewall and IPsec VPN acceleration with 2 Gbps capacity. The NP1 has a capacity of 2 Gbps through 2 x 1 Gbps interfaces.
 - The NP1 does not support frames greater than 1500 bytes. If your network uses jumbo frames, you may need to adjust the MTU (Maximum Transmission Unit) of devices connected to NP1 ports. Maximum frame size for NP2, NP4, and NP6 processors is 9000 bytes.
 - For both NP1 and NP2 network processors, ports attached to a network processor cannot be used for firmware installation by TFTP.

Session that require proxy-based and flow based security features (for example, virus scanning, IPS, application control and so on) are not fast pathed and must be processed by the CPU.
Determining the network processors installed on your FortiGate unit

Use the following command to list the NP6 processors in your FortiGate unit:

diagnose npu np6 port-list

To list other network processors on your FortiGate unit, use the following CLI command.

get hardware npu <model> list

<model> can be legacy, np1, np2 or np4.

The output lists the interfaces that have the specified processor. For example, for a FortiGate-5001B:

get hardware npu np4 list

<table>
<thead>
<tr>
<th>ID</th>
<th>Model</th>
<th>Slot</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>On-board</td>
<td></td>
<td>port1 port2 port3 port4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fabric1 base1 npu0-vlink0 npu0-vlink1</td>
</tr>
<tr>
<td>1</td>
<td>On-board</td>
<td></td>
<td>port5 port6 port7 port8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fabric2 base2 npu1-vlink0 npu1-vlink1</td>
</tr>
</tbody>
</table>

The npu0-vlink0, npu1-vlink1 etc interfaces are used for accelerating inter-VDOM links.

How NP hardware acceleration alters packet flow

NP hardware acceleration generally alters packet flow as follows:

1. Packets initiating a session pass to the FortiGate unit’s main processing resources (CPU).

2. The FortiGate unit assesses whether the session matches fast path (offload) requirements. To be suitable for offloading, traffic must possess only characteristics that can be processed by the fast path. The list of requirements depends on the processor, see “NP6 session fast path requirements” on page 24 or “NP4 session fast path requirements” on page 40.

 If the session can be fast pathed, the FortiGate unit sends the session key or IPsec security association (SA) and configured firewall processing action to the appropriate network processor.

3. Network processors continuously match packets arriving on their attached ports against the session keys and SAs they have received.
 - If a network processor’s network interface is configured to perform hardware accelerated anomaly checks, the network processor drops or accepts packets which match the configured anomaly patterns. These checks are separate from and in advance of anomaly checks performed by IPS, which is not compatible with network processor offloading. See “Offloading NP pre-IPS anomaly detection” on page 16.
 - The network processor next checks for a matching session key or SA. If a matching session key or SA is found, and if the packet meets packet requirements, the network processor processes the packet according to the configured action and then sends the resulting packet. This is the actual offloading step. Performing this processing on the NP processor improves overall performance because the NP processor is optimized for this task. As well, overall FortiGate performance is improved because the CPU has fewer sessions to process.
If a matching session key or SA is not found, or if the packet does not meet packet requirements, the packet cannot be offloaded. The network processor sends the data to the FortiGate unit's CPU, which processes the packet.

Encryption and decryption IPsec traffic originating from the FortiGate can utilize network processor encryption capabilities. See “Configuring NP accelerated VPN encryption/decryption offloading” on page 18.

Packet forwarding rates vary by the percentage of offloadable processing and the type of network processing required by your configuration, but are independent of frame size. For optimal traffic types, network throughput can equal wire speed.

NP processors and traffic logging and monitoring

Except for the NP6, network processors do not count offloaded packets, and offloaded packets are not logged by traffic logging and are not included in traffic statistics and traffic log reports.

NP6 processors support per-session traffic and byte counters, Ethernet MIB matching, and reporting through messages resulting in traffic statistics and traffic log reporting.

NP session offloading in HA active-active configuration

Network processors can improve network performance in active-active (load balancing) high availability (HA) configurations, even though traffic deviates from general offloading patterns, involving more than one network processor, each in a separate FortiGate unit. No additional offloading requirements apply.

Once the primary FortiGate unit’s main processing resources send a session key to its network processor(s), network processor(s) on the primary unit can redirect any subsequent session
traffic to other cluster members, reducing traffic redirection load on the primary unit’s main processing resources.

As subordinate units receive redirected traffic, each network processor in the cluster assesses and processes session offloading independently from the primary unit. Session key states of each network processor are not part of synchronization traffic between HA members.

Configuring NP HMAC check offloading

Hash-based Message Authentication Code (HMAC) checks offloaded to network processors by default. You can enter the following command to disable this feature:

```
configure system global
  set ipsec-hmac-offload disable
end
```

Offloading NP pre-IPS anomaly detection

Network interfaces associated with a port attached to a network processor can be configured to offload anomaly checking. This anomaly checking happens before other offloading and separately from and in advance of DoS policy anomaly checking. Using the following command, each FortiGate interface can have a different anomaly checking configuration.

```
config system interface
  edit <port-name>
    set fp-anomaly <anomalies>
  end
```

where `<anomalies>` can be one, more than one or all of the following:

<table>
<thead>
<tr>
<th>Anomaly</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>drop_icmp_frag</td>
<td>Drop ICMP fragments to pass.</td>
</tr>
<tr>
<td>drop_icmpland</td>
<td>Drop ICMP Land.</td>
</tr>
<tr>
<td>drop_ipland</td>
<td>Drop IP Land.</td>
</tr>
<tr>
<td>drop_iplsrr</td>
<td>Drop IP with Loose Source Record Route option.</td>
</tr>
<tr>
<td>drop_iprr</td>
<td>Drop IP with Record Route option.</td>
</tr>
<tr>
<td>drop_ipsecurity</td>
<td>Drop IP with Security option.</td>
</tr>
<tr>
<td>drop_ipsrr</td>
<td>Drop IP with Strict Source Record Route option.</td>
</tr>
<tr>
<td>drop_ipstream</td>
<td>Drop IP with Stream option.</td>
</tr>
<tr>
<td>drop_iptimestamp</td>
<td>Drop IP with Timestamp option.</td>
</tr>
<tr>
<td>drop_ipunknown_option</td>
<td>Drop IP with malformed option.</td>
</tr>
<tr>
<td>drop_ipunknown_prot</td>
<td>Drop IP with Unknown protocol.</td>
</tr>
<tr>
<td>drop_tcp_fin_noack</td>
<td>Drop TCP FIN with no ACT flag set to pass.</td>
</tr>
<tr>
<td>drop_tcp_no_flag</td>
<td>Drop TCP with no flag set to pass.</td>
</tr>
<tr>
<td>drop_tcpland</td>
<td>Drop TCP Land.</td>
</tr>
</tbody>
</table>
Example

You might configure an NP4 to drop packets with TCP WinNuke or unknown IP protocol anomalies, but to pass packets with an IP time stamp, using hardware acceleration provided by the network processor.

```plaintext
config system interface
    edit port1
        set fp-anomaly drop_winnuke drop_ipunknown_prot pass_iptimestamp
    end
```

Software switch interfaces and NP processors

FortiOS supports creating a software switch by grouping two or more FortiGate physical interfaces into a single virtual or software switch interface. All of the interfaces in this virtual switch act like interfaces in a hardware switch in that they all have the same IP address and can be connected to the same network. You create a software switch interface from the CLI using the command `config system switch-interface`.

<table>
<thead>
<tr>
<th>Anomaly</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>drop_udpland</td>
<td>Drop UDP Land.</td>
</tr>
<tr>
<td>drop_winnuke</td>
<td>Drop TCP WinNuke.</td>
</tr>
<tr>
<td>pass_icmp_frag</td>
<td>Allow ICMP fragments to pass.</td>
</tr>
<tr>
<td>pass_icmpland</td>
<td>Allow ICMP Land to pass.</td>
</tr>
<tr>
<td>pass_ipland</td>
<td>Allow IP land to pass.</td>
</tr>
<tr>
<td>pass_iplsrr</td>
<td>Allow IP with Loose Source Record Route option to pass.</td>
</tr>
<tr>
<td>pass_ipr</td>
<td>Allow IP with Record Route option to pass.</td>
</tr>
<tr>
<td>pass_ipsecurity</td>
<td>Allow IP with Security option to pass.</td>
</tr>
<tr>
<td>pass_ipsrr</td>
<td>Allow IP with Strict Source Record Route option to pass.</td>
</tr>
<tr>
<td>pass_ipstream</td>
<td>Allow IP with Stream option to pass.</td>
</tr>
<tr>
<td>pass_iptimestamp</td>
<td>Allow IP with Timestamp option to pass.</td>
</tr>
<tr>
<td>pass_ipunknown_option</td>
<td>Allow IP with malformed option to pass.</td>
</tr>
<tr>
<td>pass_ipunknown_prot</td>
<td>Allow IP with Unknown protocol to pass.</td>
</tr>
<tr>
<td>pass_tcp_fin_noack</td>
<td>Allow TCP FIN with no ACT flag set to pass.</td>
</tr>
<tr>
<td>pass_tcp_no_flag</td>
<td>Allow TCP with no flag set to pass.</td>
</tr>
<tr>
<td>pass_tcpland</td>
<td>Allow TCP Land to pass.</td>
</tr>
<tr>
<td>pass_udpland</td>
<td>Allow UDP Land to pass.</td>
</tr>
<tr>
<td>pass_winnuke</td>
<td>Allow TCP WinNuke to pass.</td>
</tr>
</tbody>
</table>
The software switch is a bridge group of several interfaces, and the FortiGate CPU maintains the mac-port table for this bridge. As a result of this CPU involvement, traffic processed by a software switch interface is not offloaded to network processors.

Configuring NP accelerated VPN encryption/decryption offloading

Network processing unit (npu) settings configure offloading behavior for IPsec VPN. Configured behavior applies to all network processors contained by the FortiGate unit itself or any installed AMC modules.

```config system npu
    set enc-offload-antireplay {enable | disable}
    set dec-offload-antireplay {enable | disable}
    set offload-ipsec-host {enable | disable}
end```

### Example

You could configure the offloading of encryption and decryption for an IPsec SA that was sent to the network processor.

```config system npu
 set enc-offload-antireplay enable
 set dec-offload-antireplay enable
 set offload-ipsec-host enable
end```

Checking that traffic is offloaded by NP processors

A number of diagnose commands can be used to verify that traffic is being offloaded.
Using the packet sniffer

Use the packet sniffer to verify that traffic is offloaded. Offloaded traffic is not picked up by the packet sniffer so if you are sending traffic through the FortiGate unit and it is not showing up on the packet sniffer you can conclude that it is offloaded.

```bash
diag sniffer packet port1 <option>
```

Checking the firewall session offload tag

Use the `diagnose sys session list` command to display sessions. If the output for a session includes the `npu info` field you should see information about session being offloaded. If the output doesn't contain an `npu info` field then the session has not been offloaded.

```bash
diagnose sys session list

session info: proto=6 proto_state=01 duration=34 expire=3565
timeout=3600 flags=00000000 sockflag=00000000 sockport=0
av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
ha_id=0 policy_dir=0 tunnel=/
state=may_dirty npu
statistic(bytes/packets/allow_err): org=295/3/1 reply=60/1/1
tuples=2
orgin->sink: org pre->post, reply pre->post dev=48->6/6->48
gwy=10.1.100.11/11.11.11.1
hook=pre dir=org act=noop
172.16.200.55:56453->10.1.100.11:80(0.0.0.0:0)
hook=post dir=reply act=noop
10.1.100.11:80->172.16.200.55:56453(0.0.0.0:0)
post/(before,after) 0/(0,0), 0/(0,0)
misc=0 policy_id=1 id_policy_id=0 auth_info=0 chk_client_info=0 vd=4
serial=0000091c tos=ff/ff ips_view=0 app_list=0 app=0
dd_type=0 dd_mode=0
per_ip_bandwidth meter: addr=172.16.200.55, bps=393
npu_state=00000000

npu info: flag=0x81/0x81, offload=4/4, ips_offload=0/0, epid=1/23,
ipid=23/1, vlan=32779/0
```
Verifying IPsec VPN traffic offloading

The following commands can be used to verify IPsec VPN traffic offloading to NP processors.

```plaintext
diagnose vpn ipsec status

NP1/NP2/NP4_0/sp_0_0:
    null:  0       0
    des:   0       0
    3des: 4075    4074
    aes:   0       0
    aria:  0       0
    seed:  0       0
    null:  0       0
    md5:   4075    4074

shai:   0       0
sha256: 0       0
sha384: 0       0
sha512: 0       0

diagnose vpn tunnel list
list all ipsec tunnel in vd 3

-------------------------------
name=p1-vdom1 ver=1 serial=5 11.11.11.1:0->11.11.11.2:0 lgwy=static
tun=tunnel mode=auto bound_if=47
proxyid_num=1 child_num=0 refcnt=8 ilast=2 olast=2
stat: rxp=3076 txp=1667 rxb=4299623276 txb=66323
dpd: mode=active on=1 idle=5000ms retry=3 count=0 seqno=20
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=p2-vdom1 proto=0 sa=1 ref=2 auto_negotiate=0 serial=1
    src: 0:0:0.0/0.0.0.0
dst: 0:0:0.0/0.0.0.0
    SA: ref=6 options=0000000e type=0 soft=0 mtu=1436 expire=1736
           replaywin=2048 seqno=680
    life: type=01 bytes=0/0 timeout=1748/1800
dec: spi=ae01010c esp=3des key=24
       18e021bcace2253475189f292fbc2e4677563b07498a07
       ah=md5 key=16 b4f44368741632b4e33e5f5b794253d3
enc: spi=ae01010d esp=3des key=24
       42c94a8a2f72a44f9a3777f8e6aa3b24160b8af15f54a573
       ah=md5 key=16 6214155f76b63a93345dcc9ec02d6415
dec:pkts/bytes=3073/4299621477, enc:pkts/bytes=1667/66323
	npu_flag=03 npu_rgwy=11.11.11.2 npu_lgwy=11.11.11.1 npu_selid=4
```

Fortinet Technologies Inc.
Controlling IPS NPx and CPx acceleration

You can use the following commands to enable or disable acceleration of IPS processing by NPx and CPx processors:

```snippets
config ips global
  set np-accel-mode {none | basic}
  set cp-accel-mode {none | basic | advanced}
end
```

The network processor (NP) acceleration modes are:

- **none**: Network Processor acceleration disabled
- **basic**: Basic Network Processor acceleration enabled

The content processor (CP) acceleration modes are:

- **none**: Content Processor acceleration disabled
- **basic**: Basic Content Processor acceleration enabled
- **advanced**: Advanced Content Processor acceleration enabled
Dedicated Management CPU

The web-based manager and CLI of FortiGate units with NP6 and NP4 processors may become unresponsive when the system is under heavy processing load because NP6 or NP4 interrupts overload the CPUs preventing CPU cycles from being used for management tasks. You can resolve this issue by using the following command to dedicate CPU core 0 to management tasks.

```
cfg sys npu
  set dedicated-management-cpu {enable | disable}
end
```

All management tasks are then processed by CPU 0 and NP6 or NP4 interrupts are handled by the remaining CPU cores.
NP6 Acceleration

NP6 network processors provide fastpath acceleration by offloading communication sessions from the FortiGate CPU. When the first packet of a new session is received by an interface connected to an NP6 processor, just like any session connecting with any FortiGate interface, the session is forwarded to the FortiGate CPU where it is matched with a security policy. If the session is accepted by a security policy and if the session can be offloaded its session key is copied to the NP6 processor that received the packet. All of the rest of the packets in the session are intercepted by the NP6 processor and fast-pahted out of the FortiGate unit to their destination without ever passing through the FortiGate CPU. The result is enhanced network performance provided by the NP6 processor plus the network processing load is removed from the CPU. In addition the NP6 processor can handle some CPU intensive tasks, like IPsec VPN encryption/decryption.

Session keys (and IPsec SA keys) are stored in the memory of the NP6 processor that is connected to the interface that received the packet that started the session. All sessions are fast-pahted and accelerated, even if they exit the FortiGate unit through an interface connected to another NP6. There is no dependence on getting the right pair of interfaces since the offloading is done by the receiving NP6.

The key to making this possible is an Integrated Switch Fabric (ISF) that connects the NP6s and the FortiGate unit interfaces together. Many FortiGate units with NP6 processors also have an ISF. The ISF allows any port connectivity. All ports and NP6s can communicate with each other over the ISF. There are no special ingress and egress fast path requirements as long as traffic enters and exits on interfaces connected to the same ISF.

Some FortiGate units, such as the FortiGate-1000D include multiple NP6 processors that are not connected by an ISF. Because the ISF is not present fast path acceleration is supported only between interfaces connected to the same NP6 processor. Since the ISF introduces some latency, models with no ISF provide low-latency network acceleration between network interfaces connected to the same NP6 processor.

There are at least two limitations to keep in mind:

- The capacity of each NP6 processor. An individual NP6 processor can support between 10 and 16 million sessions. This number is limited by the amount of memory the processor has. Once an NP6 processor hits its session limit, sessions that are over the limit are sent to the CPU. You can avoid this problem by as much as possible distributing incoming sessions evenly among the NP6 processors. To be able to do this you need to be aware of which interfaces connect to which NP6 processors and distribute incoming traffic accordingly.
- Some FortiGate units may use some NP6 processors for special functions. For example, ports 25 to 32 of the FortiGate-3700D can be used for low latency offloading. See “FortiGate-3700D fast path architecture” on page 35 for more information.

This chapter contains the following topics:

- NP6 session fast path requirements
- Viewing your FortiGate NP6 processor configuration
- Increasing NP6 offloading capacity using link aggregation groups (LAGs)
- Configuring Inter-VDOM link acceleration with NP6 processors
NP6 session fast path requirements

NP6 processors can offload the following traffic and services:

- IPv4 and IPv6 traffic and NAT64 and NAT46 traffic (as well as IPv4 and IPv6 versions of the following traffic types where appropriate)
- TCP, UDP, ICMP and SCTP traffic
- IPSec VPN traffic, and offloading of IPsec encryption/decryption (including SHA2-256 and SHA2-512)
- Anomaly-based intrusion prevention, checksum offload and packet defragmentation
- SIT and IPv6 Tunnelling sessions
- Multicast traffic (including Multicast over IPsec)
- CAPWAP and wireless bridge traffic tunnel encapsulation to enable line rate wireless forwarding from FortiAP devices
- Traffic shaping and priority queuing for both shared and per IP traffic shaping. An NP6 processor has 16 million queues for traffic shaping and statistics counting.
- Syn proxying
- Inter-VDOM link traffic

Sessions that are offloaded must be fast path ready. For a session to be fast path ready it must meet the following criteria:

- Layer 2 type/length must be 0x0800 for IPv4 or 0x86dd for IPv6 (IEEE 802.1q VLAN specification is supported)
- Link aggregation between any network interfaces sharing the same network processor(s) may be used (IEEE 802.3ad specification is supported)
- Layer 3 protocol can be IPv4 or IPv6
- Layer 4 protocol can be UDP, TCP, ICMP, or SCTP
- In most cases, Layer 3 / Layer 4 header or content modification sessions that require a session helper can be offloaded.
- Local host traffic (originated by the FortiGate unit) can be offloaded
- Application layer content modification is not supported (the firewall policy that accepts the session must not include virus scanning, web filtering, DLP, application control, IPS, email filtering, SSL/SSH inspection, VoIP or ICAP)

If you disable anomaly checks by Intrusion Prevention (IPS), you can still enable hardware accelerated anomaly checks using the `fp-anomaly` field of the `config system interface` CLI command. See “Offloading NP pre-IPS anomaly detection” on page 16.

If a session is not fast path ready, the FortiGate unit will not send the session key or IPsec SA key to the NP6 processor. Without the session key, all session key lookup by a network processor for incoming packets of that session fails, causing all session packets to be sent to the FortiGate unit’s main processing resources, and processed at normal speeds.

If a session is fast path ready, the FortiGate unit will send the session key or IPsec SA key to the network processor. Session key or IPsec SA key lookups then succeed for subsequent packets from the known session or IPsec SA.
Packet fast path requirements

Packets within the session must then also meet packet requirements.

- Incoming packets must not be fragmented.
- Outgoing packets must not require fragmentation to a size less than 385 bytes. Because of this requirement, the configured MTU (Maximum Transmission Unit) for network processors’ network interfaces must also meet or exceed the network processors’ supported minimum MTU of 385 bytes.

Mixing fast path and non-fast path traffic

If packet requirements are not met, an individual packet will be processed by the FortiGate CPU regardless of whether other packets in the session are offloaded to the NP6.

Also, in some cases, a protocol’s session(s) may receive a mixture of offloaded and non-offloaded processing. For example, VoIP control packets may not be offloaded but VoIP data packets (voice packets) may be offloaded.

Viewing your FortiGate NP6 processor configuration

Use the following command to view the NP6 processor configuration of your FortiGate unit:

```
diagnose npu np6 port-list
```

For example output of this command for different FortiGate models, see “FortiGate NP6 architectures” on page 30.

Increasing NP6 offloading capacity using link aggregation groups (LAGs)

NP6 processors can offload sessions received by interfaces in link aggregation (LAG) groups. You can use link aggregation groups to offload more traffic that would exceed the capacity of a single FortiGate interface. For example, if you want to offload sessions on a 30 GB link you can add three 10-GB interfaces to a LAG group and send 30 GB of traffic to the LAG group.

Just like with normal interfaces, traffic accepted by a LAG group is offloaded by the NP6 processor connected to the interfaces in the LAG group that receive the traffic to be offloaded. If all interfaces in a LAG group are connected to the same NP6 processor, traffic received by the LAG group is offloaded by that NP6 processor. The amount of traffic that can be offloaded is limited by the capacity of the NP6 processor.

LAG groups can include interfaces connected to more than one NP6 processor. For example, a adding a second NP6 processor to a LAG group effectively doubles the offloading capacity of the LAG group. Adding a third further increases capacity. Using LAG groups allows you to increase offloading capacity for incoming traffic by sharing the traffic load across multiple NP6 processors. This increase in capacity is supported by the integrated switch fabric that allows the NP6 processors to share session information.

The increase in offloading capacity may not actually be doubled by adding a second NP6 processor to a LAG group. Traffic and load conditions and other factors may limit the actual achieved offloading result.
Configuring Inter-VDOM link acceleration with NP6 processors

FortiGate units with NP6 processors include inter-VDOM links that can be used to accelerate inter-VDOM link traffic.

- For a FortiGate unit with two NP6 processors there are two accelerated inter-VDOM links, each with two interfaces:
 - npu0_vlink
 - npu0_vlink0
 - npu0_vlink1
 - npu1_vlink
 - npu1_vlink0
 - npu1_vlink1

These interfaces are visible from the GUI and CLI. For a FortiGate unit with NP6 interfaces, enter the following CLI command to display the NP6-accelerated inter-VDOM links:

```
get system interface
...
== [ npu0_vlink0 ]
name: npu0_vlink0    mode: static    ip: 0.0.0.0 0.0.0.0   status: down
  netbios-forward: disable    type: physical   sflow-sampler: disable
  explicit-web-proxy: disable explicit-ftp-proxy: disable
  mtu-override: disable wccp: disable drop-overlapped-fragment: disable
drop-fragment: disable
== [ npu0_vlink1 ]
name: npu0_vlink1    mode: static    ip: 0.0.0.0 0.0.0.0   status: down
  netbios-forward: disable    type: physical   sflow-sampler: disable
  explicit-web-proxy: disable explicit-ftp-proxy: disable
  mtu-override: disable wccp: disable drop-overlapped-fragment: disable
drop-fragment: disable
== [ npu1_vlink0 ]
name: npu1_vlink0    mode: static    ip: 0.0.0.0 0.0.0.0   status: down
  netbios-forward: disable    type: physical   sflow-sampler: disable
  explicit-web-proxy: disable explicit-ftp-proxy: disable
  mtu-override: disable wccp: disable drop-overlapped-fragment: disable
drop-fragment: disable
== [ npu1_vlink1 ]
name: npu1_vlink1    mode: static    ip: 0.0.0.0 0.0.0.0   status: down
  netbios-forward: disable    type: physical   sflow-sampler: disable
  explicit-web-proxy: disable explicit-ftp-proxy: disable
  mtu-override: disable wccp: disable drop-overlapped-fragment: disable
drop-fragment: disable
...
```

By default the interfaces in each inter-VDOM link are assigned to the root VDOM. To use these interfaces to accelerate inter-VDOM link traffic, assign each interface in the pair to the VDOMs that you want to offload traffic between. For example, if you have added a VDOM named New-VDOM to a FortiGate unit with NP4 processors, you can go to System > Network > Interfaces and edit the npu0_vlink1 interface and set the Virtual Domain to New-VDOM. This results in an accelerated inter-VDOM link between root and New-VDOM. You can also do this from the CLI:
config system interface
 edit npu0-vlink1
 set vdom New-VDOM
 end

Using VLANs to add more accelerated Inter-VDOM links

You can add VLAN interfaces to the accelerated inter-VDOM links to create inter-VDOM links between more VDOMs. For the links to work, the VLAN interfaces must be added to the same inter-VDOM link, must be on the same subnet, and must have the same VLAN ID.

For example, to accelerate inter-VDOM link traffic between VDOMs named Marketing and Engineering using VLANs with VLAN ID 100 go to System > Network > Interfaces and select Create New to create the VLAN interface associated with the Marketing VDOM:

<table>
<thead>
<tr>
<th>Name</th>
<th>Marketing-link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>VLAN</td>
</tr>
<tr>
<td>Interface</td>
<td>npu0_vlink0</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>100</td>
</tr>
<tr>
<td>Virtual Domain</td>
<td>Marketing</td>
</tr>
<tr>
<td>IP/Network Mask</td>
<td>172.20.120.12/24</td>
</tr>
</tbody>
</table>

Create the inter-VDOM link associated with Engineering VDOM:

<table>
<thead>
<tr>
<th>Name</th>
<th>Engineering-link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>VLAN</td>
</tr>
<tr>
<td>Interface</td>
<td>npu0_vlink1</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>100</td>
</tr>
<tr>
<td>Virtual Domain</td>
<td>Engineering</td>
</tr>
<tr>
<td>IP/Network Mask</td>
<td>172.20.120.22/24</td>
</tr>
</tbody>
</table>

Or do the same from the CLI:

```
cfgset system interface
    edit Marketing-link
        set vdom Marketing
        set ip 172.20.120.12/24
        set interface npu0_vlink0
        set vlanid 100
    next
    edit Engineering-link
        set vdom Engineering
        set ip 172.20.120.22/24
        set interface npu0_vlink1
        set vlanid 100
```
Confirm that the traffic is accelerated

Use the following CLI commands to obtain the interface index and then correlate them with the session entries. In the following example traffic was flowing between new accelerated inter-VDOM links and physical ports port 1 and port 2 also attached to the NP6 processor.

diagnose ip address list

```
IP=172.31.17.76->172.31.17.76/255.255.252.0 index=5 devname=port1
IP=10.74.1.76->10.74.1.76/255.255.252.0 index=6 devname=port2
IP=172.20.120.12->172.20.120.12/255.255.255.0 index=55
    devname=IVL-VLAN1_ROOT
IP=172.20.120.22->172.20.120.22/255.255.255.0 index=56
    devname=IVL-VLAN1_VDOM1
```

diagnose sys session list

```
session info: proto=1 proto_state=00 duration=282 expire=24 timeout=0
    session info: proto=1 proto_state=00 duration=124 expire=59
    timeout=0 flags=00000000 sockflag=00000000 sockport=0 av_idx=0
    use=3
    origin-shaper=
    reply-shaper=
    per_ip_shaper=
    ha_id=0 policy_dir=0 tunnel=/
    state=may_dirty npu
    statistic(bytes/packets/allow_err): org=180/3/1 reply=120/2/1
        tuples=2
    orgin->sink: org pre->post, reply pre->post dev=55->5/5->55
        gwy=172.31.19.254/172.20.120.22
    hook=post dir=org act=snat
        10.74.2.87:768->10.2.2.2:8(172.31.17.76:62464)
    hook=pre dir=reply act=dnat
        10.2.2.2:62464->172.31.17.76:0(10.74.2.87:768)
    misc=0 policy_id=4 id_policy_id=0 auth_info=0 chk_client_info=0 vd=0
    serial=00000001 tos=ff/ff ips_view=0 app_list=0 app=0
    dd_type=0 dd_mode=0
    per_ip_bandwidth meter: addr=10.74.2.87, bps=880
    npu_state=00000000
    npu info: flag=0x81/0x81, offload=8/8, ips_offload=0/0,
        epid=160/218, ipid=218/160, vlan=32769/0

session info: proto=1 proto_state=00 duration=124 expire=20 timeout=0
    flags=00000000 sockflag=00000000 sockport=0 av_idx=0 use=3
    origin-shaper=
    reply-shaper=
    per_ip_shaper=
    ha_id=0 policy_dir=0 tunnel=/
    state=may_dirty npu
    statistic(bytes/packets/allow_err): org=180/3/1 reply=120/2/1
        tuples=2
    orgin->sink: org pre->post, reply pre->post dev=6->56/56->6
        gwy=172.20.120.12/10.74.2.87
```
Enabling per-session accounting for offloaded NP6 sessions

By default FortiOS does not record log messages for offloaded NP6 and NP4 sessions. This also means that traffic monitoring does not report correct session counts, byte counts and packet counts.

However, for NP6 processors you can use the following command to enable per-session accounting for each NP6 processor in the FortiGate unit.

For example, to enable session accounting for the first and second NP6 processors (np6_0 and np6_1):

```bash
config system np6
  edit np6_0
    set per-session-accounting enable
  next
  edit np6_1
    set per-session-accounting enable
end
```
Many FortiGate models can offload some types of network traffic processing from main processing resources to specialized network processors. If your network has a significant volume of traffic that is suitable for offloading, this hardware acceleration can significantly improve your network throughput.

This chapter shows the fastpath architecture for the following FortiGate units:

- FortiGate-500D fast path architecture
- FortiGate-1000D fast path architecture
- FortiGate-1500D fast path architecture
- FortiGate-3700D fast path architecture
- FortiGate-5001D fast path architecture

FortiGate-500D fast path architecture

The FortiGate-500D includes one NP6 processor connected to eight 1Gb SFP interfaces (port1-port8 and eight 1Gb RJ-45 Ethernet ports (port9-16).

```
You can use the following command to display the FortiGate-500D NP6 configuration. The command output shows one NP6 named NP6_0 and the interfaces (ports) connected to it.

diagnose npu np6 port-list

<table>
<thead>
<tr>
<th>Chip</th>
<th>XAUI</th>
<th>Ports</th>
<th>Max Speed</th>
<th>Cross-chip Offloading</th>
</tr>
</thead>
<tbody>
<tr>
<td>np6_0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>port10</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>port9</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>port12</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>port11</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>port14</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>port13</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>port16</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
```
FortiGate-1000D fast path architecture

The FortiGate-1000D includes two NP6 processors that are not connected by an integrated switch fabric (ISF). The NP6 processors are connected to network interfaces as follows:

- Eight 1Gb SFP interfaces (port17-port24), eight 1Gb RJ-45 Ethernet interfaces (port25-32) and one 10Gb SFP+ interface (portB) share connections to the first NP6 processor.
- Eight 1Gb SFP interfaces (port1-port8), eight RJ-45 Ethernet interfaces (port9-16) and one 10Gb SFP+ interface (portA) share connections to the second NP6 processor.
You can use the following command to display the FortiGate-1000D NP6 configuration. The command output shows two NP6s named NP6_0 and NP6_1. The output also shows the interfaces (ports) connected to each NP6.

```plaintext
diagnose npu np6 port-list
Chip | XAUI Ports | Max Speed | Cross-chip Speed offloading
----- | ---------- | --------- | ------------------------
np6_0  | 0
1 | port17 1G | Yes | 
1 | port18 1G | Yes | 
1 | port19 1G | Yes | 
1 | port20 1G | Yes | 
1 | port21 1G | Yes | 
1 | port22 1G | Yes | 
1 | port23 1G | Yes | 
1 | port24 1G | Yes | 
1 | port27 1G | Yes | 
1 | port28 1G | Yes | 
1 | port25 1G | Yes | 
1 | port26 1G | Yes | 
1 | port31 1G | Yes | 
1 | port32 1G | Yes | 
1 | port29 1G | Yes | 
1 | port30 1G | Yes | 
2 | portB 10G | Yes | 
3 | 
np6_1  | 0
1 | port1 1G | Yes | 
1 | port2 1G | Yes | 
1 | port3 1G | Yes | 
1 | port4 1G | Yes | 
1 | port5 1G | Yes | 
1 | port6 1G | Yes | 
1 | port7 1G | Yes | 
1 | port8 1G | Yes | 
1 | port11 1G | Yes | 
1 | port12 1G | Yes | 
1 | port9 1G | Yes | 
1 | port10 1G | Yes | 
1 | port15 1G | Yes | 
1 | port16 1G | Yes | 
1 | port13 1G | Yes | 
1 | port14 1G | Yes | 
2 | portA 10G | Yes | 
3 | 
```
FortiGate-1500D fast path architecture

The FortiGate-1500D features two NP6 processors both connected to an integrated switch fabric.

- Eight SFP 1Gb interfaces (port1-port8), eight RJ-45 Ethernet ports (port17-24) and four SFP+ 10Gb interfaces (port33-port36) share connections to the first NP6 processor.
- Eight SFP 1Gb interfaces (port9-port16), eight RJ-45 Ethernet ports (port25-32) and four SFP+ 10Gb interfaces (port37-port40) share connections to the second NP6 processor.

You can use the following command to display the FortiGate-1500D NP6 configuration. The command output shows two NP6s named NP6_0 and NP6_1. The output also shows the interfaces (ports) connected to each NP6.

```
diagnose npu np6 port-list
```

<table>
<thead>
<tr>
<th>Chip</th>
<th>XAUI</th>
<th>Ports</th>
<th>Max Speed</th>
<th>Cross-chip offloading</th>
</tr>
</thead>
<tbody>
<tr>
<td>np6_0</td>
<td>0</td>
<td>port1</td>
<td>10G</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>port5</td>
<td>10G</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>port17</td>
<td>10G</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>port21</td>
<td>10G</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>port33</td>
<td>10G</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>port2</td>
<td>10G</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>port6</td>
<td>10G</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>port18</td>
<td>10G</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>port22</td>
<td>10G</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>port34</td>
<td>10G</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>port3</td>
<td>10G</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>port7</td>
<td>10G</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>port19</td>
<td>10G</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>port23</td>
<td>10G</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>port35</td>
<td>10G</td>
<td>Yes</td>
</tr>
<tr>
<td>Port ID</td>
<td>Port Number</td>
<td>Speed</td>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>port4</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>port8</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>port20</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>port24</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>port36</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>np6_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>port9</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>port13</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>port25</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>port29</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>port37</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>port10</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>port14</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>port26</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>port30</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>port38</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>port11</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>port15</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>port27</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>port31</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>port39</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>port12</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>port16</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>port28</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>port32</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>port40</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
FortiGate-3700D fast path architecture

The FortiGate-3700D features four NP6 processors.

- Port25 through port28, SFP+ 10Gb interfaces, share connections to the first NP6 processor.
- Port29 through port32, SFP+ 10Gb interfaces, share connections to the second NP6 processor.
- Ten SFP+ 10Gb interfaces, port5 through port14, and two 40Gb QSFP interfaces, port1 and port2 share connections to the third NP6 processor.
- Ten SFP+ 10Gb interfaces, port15 through port24, and two 40Gb QSFP interfaces, port3 and port4 share connections to the fourth NP6 processor.

Ports 25 to 32 can be used for low latency offloading. As long as traffic enters and exits the FortiGate-3700D through ports connected to the same NP6 processor and using these low latency ports the traffic will be offloaded and have lower latency than other NP6 offloaded traffic. Latency is reduced by bypassing the integrated switch fabric. Specifically:

- Port25 through port28, share connections to the first NP6 processor so sessions entering one of these ports and exiting through another will experience low latency
- Port29 through port32, share connections to the second NP6 processor so sessions entering one of these ports and exiting through another will experience low latency
You can use the following command to display the FortiGate-3700D NP6 configuration. The command output shows four NP6s named NP6_0, NP6_1, NP6_2, and NP6_3. The output also shows the interfaces (ports) connected to each NP6.

```bash
diag npu np6 port-list
Chip XAUI Ports Max Cross-chip
Speed offloading
---------- ------- ------- ------- -------------
np6_0 0 port25 10G Yes
1 port26 10G Yes
2 port27 10G Yes
3 port28 10G Yes
---------- ------- ------- ------- -------------
np6_1 0 port29 10G Yes
1 port30 10G Yes
2 port31 10G Yes
3 port32 10G Yes
---------- ------- ------- ------- -------------
np6_2 0 port5 10G Yes
0 port9 10G Yes
0 port13 10G Yes
1 port6 10G Yes
1 port10 10G Yes
1 port14 10G Yes
2 port7 10G Yes
2 port11 10G Yes
3 port8 10G Yes
3 port12 10G Yes
0-3 port1 40G Yes
0-3 port2 40G Yes
---------- ------- ------- ------- -------------
np6_3 0 port15 10G Yes
0 port19 10G Yes
0 port23 10G Yes
1 port16 10G Yes
1 port20 10G Yes
1 port24 10G Yes
2 port17 10G Yes
2 port21 10G Yes
3 port18 10G Yes
3 port22 10G Yes
0-3 port3 40G Yes
0-3 port4 40G Yes
---------- ------- ------- ------- -------------
```
FortiGate-5001D fast path architecture

The Fortinet features two NP6 processors.

- port1, port3, fabric1 and base1 share connections to the first NP6 processor.
- port2, port4, fabric2 and base2 share connections to the second NP6 processor.

Figure 3: Fortinet NP6 to interface mapping

You can use the following command to display the FortiGate-5001D NP6 configuration. The command output shows two NP6s named NP6_0 and NP6_1. The output also shows the interfaces (ports) connected to each NP6.

diagnose npu np6 port-list

<table>
<thead>
<tr>
<th>Chip</th>
<th>XAUI Ports</th>
<th>Max</th>
<th>Cross-chip</th>
<th>Speed</th>
<th>offloading</th>
</tr>
</thead>
<tbody>
<tr>
<td>np6_0</td>
<td>elbc-ctrl/110G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 fctrl/f1-110G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 np6_0_2910G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 fctrl/f3-110G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 np6_0_3710G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 fctrl/f1-210G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 np6_0_3010G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 fctrl/f3-210G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 np6_0_3810G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 fctrl/f1-310G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 np6_0_3110G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 fctrl/f3-310G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 np6_0_3910G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 fctrl/f1-410G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 np6_0_3210G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 fctrl/f3-410G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 np6_0_4010G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3 port1 40G</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port</td>
<td>Name</td>
<td>Bandwidth</td>
<td>Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>port3</td>
<td>40G</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>port4</td>
<td>40G</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>base1</td>
<td>40G</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>base2</td>
<td>40G</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>np6_0_5</td>
<td>40G</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>np6_0_6</td>
<td>40G</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>fctrl/f140G</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>np6_0_2240G</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>fctrl/f340G</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>np6_0_2440G</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>np6_0_4140G</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>np6_0_4240G</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>np6_0_4340G</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>Name</th>
<th>Bandwidth</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>port2</td>
<td>40G</td>
<td>Yes</td>
</tr>
<tr>
<td>0-3</td>
<td>np6_1_0</td>
<td>40G</td>
<td>Yes</td>
</tr>
<tr>
<td>0-3</td>
<td>np6_1_2</td>
<td>40G</td>
<td>Yes</td>
</tr>
<tr>
<td>0-3</td>
<td>np6_1_3</td>
<td>40G</td>
<td>Yes</td>
</tr>
<tr>
<td>0-3</td>
<td>np6_1_2140G</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>0-3</td>
<td>fctrl/f240G</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>0-3</td>
<td>np6_1_2340G</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>0-3</td>
<td>fctrl/f440G</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>0-3</td>
<td>np6_1_4140G</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>0-3</td>
<td>np6_1_4240G</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>0-3</td>
<td>np6_1_4340G</td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>
NP4 Acceleration

NP4 network processors provide fastpath acceleration by offloading communication sessions from the FortiGate CPU. When the first packet of a new session is received by an interface connected to an NP4 processor, just like any session connecting with any FortiGate interface, the session is forwarded to the FortiGate CPU where it is matched with a security policy. If the session is accepted by a security policy and if the session can be offloaded its session key is copied to the NP4 processor that received the packet. All of the rest of the packets in the session are intercepted by the NP4 processor and fast-pathed out of the FortiGate unit to their destination without ever passing through the FortiGate CPU. The result is enhanced network performance provided by the NP4 processor plus the network processing load is removed from the CPU. In addition, the NP4 processor can handle some CPU intensive tasks, like IPsec VPN encryption/decryption.

Session keys (and IPsec SA keys) are stored in the memory of the NP4 processor that is connected to the interface that received the packet that started the session. All sessions are fast-pathed and accelerated, even if they exit the FortiGate unit through an interface connected to another NP4. The key to making this possible is the Integrated Switch Fabric (ISF) that connects the NP4s and the FortiGate unit interfaces together. The ISF allows any port connectivity. All ports and NP4s can communicate with each other over the ISF.

There are no special ingress and egress fast path requirements because traffic enters and exits on interfaces connected to the same ISF. Most FortiGate models with multiple NP4 processors connect all interfaces and NP4 processors to the same ISF (except management interfaces) so this should not ever be a problem.

There is one limitation to keep in mind; the capacity of each NP4 processor. An individual NP4 processor has a capacity of 20 Gbps (10 Gbps ingress and 10 Gbps egress). Once an NP4 processor hits its limit, sessions that are over the limit are sent to the CPU. You can avoid this problem by as much as possible distributing incoming sessions evenly among the NP4 processors. To be able to do this you need to be aware of which interfaces connect to which NP4 processors and distribute incoming traffic accordingly.

Some FortiGate units contain one NP4 processor with all interfaces connected to it and to the ISF. As a result, offloading is supported for traffic between any pair of interfaces.

Some FortiGate units include NP4Lite processors. These network processors have the same functionality and limitations as NP4 processors but with about half the performance. NP4Lite processors can be found in mid-range FortiGate models such as the FortiGate-200D and 240D.

This chapter contains the following topics:

- Viewing your FortiGate’s NP4 configuration
- Configuring NP4 traffic offloading
- NP4 traffic shaping offloading
- NP4 IPsec VPN offloading
- NP4 IPsec VPN offloading configuration example
- Configuring Inter-VDOM link acceleration with NP4 processors
Viewing your FortiGate’s NP4 configuration

To list the NP4 network processors on your FortiGate unit, use the following CLI command.

```plaintext
get hardware npu np4 list
```

The output lists the interfaces that have NP4 processors. For example, for a FortiGate-5001C:

```plaintext
get hardware npu np4 list
```

<table>
<thead>
<tr>
<th>ID</th>
<th>Model</th>
<th>Slot</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>On-board</td>
<td></td>
<td>port1 port2 port3 port4 fabric1 base1 npu0-vlink0 npu0-vlink1</td>
</tr>
<tr>
<td>1</td>
<td>On-board</td>
<td></td>
<td>port5 port6 port7 port8 fabric2 base2 npu1-vlink0 npu1-vlink1</td>
</tr>
</tbody>
</table>

Depending on the product, NP4 network processors may or may not be directly connected to each other on the circuit board through an EEI (Enhanced Extension Interface).

Directly connected network processors have an EEI, and can pass traffic between them without involving the FortiGate unit’s main processing resources.

Indirectly connected network processors have no EEI, and cannot pass traffic between them without involving the FortiGate unit’s main processing resources.

Sessions can only be offloaded if both the source and destination port are connected to the same network processor or directly (EEI) connected network processor pair.

For information about the network processors in specific FortiGate models, see “FortiGate NP4 architectures” on page 51.

NP4lite CLI commands (disabling NP4Lite offloading)

If your FortiGate unit includes an NP4Lite processor the following commands will be available:

- Use the following command to disable or enable NP4Lite offloading. By default NP4lite offloading is enabled. If you want to disable NP4Lite offloading to diagnose a problem enter:
  ```plaintext
diagnose npu nplite fastpath disable
```

 This command disables NP4Lite offloading until your FortiGate reboots. You can also re-enable offloading by entering the following command:

  ```plaintext
diagnose npu nplite fastpath enable
```

- NP4lite debug command. Use the following command to debug NP4Lite operation:

  ```plaintext
diagnose npl npl_debug {<parameters>}
```

Configuring NP4 traffic offloading

Offloading traffic to a network processor requires that the FortiGate unit configuration and the traffic itself is suited to hardware acceleration. There are requirements for path the sessions and the individual packets.

NP4 session fast path requirements

Sessions must be fast path ready. Fast path ready session characteristics are:

- Layer 2 type/length must be 0x0800 (IEEE 802.1q VLAN specification is supported); link aggregation between any network interfaces sharing the same network processor(s) may be used (IEEE 802.3ad specification is supported)
- Layer 3 protocol must be IPv4
Packet fast path requirements

Packets within the session must then also meet packet requirements.

- Incoming packets must not be fragmented.
- Outgoing packets must not require fragmentation to a size less than 385 bytes. Because of this requirement, the configured MTU (Maximum Transmission Unit) for network processors’ network interfaces must also meet or exceed the network processors’ supported minimum MTU of 385 bytes.

If packet requirements are not met, an individual packet will use FortiGate unit main processing resources, regardless of whether other packets in the session are offloaded to the specialized network processor(s).

In some cases, due to these requirements, a protocol’s session(s) may receive a mixture of offloaded and non-offloaded processing.

For example, FTP uses two connections: a control connection and a data connection. The control connection requires a session helper, and cannot be offloaded, but the data connection does not require a session helper, and can be offloaded. Within the offloadable data session, fragmented packets will not be offloaded, but other packets will be offloaded.

Some traffic types differ from general offloading requirements, but still utilize some of the network processors’ encryption and other capabilities. Exceptions include IPsec traffic and active-active high availability (HA) load balanced traffic.

Mixing fast path and non-fast path traffic

If packet requirements are not met, an individual packet will be processed by the FortiGate CPU regardless of whether other packets in the session are offloaded to the NP4.

Also, in some cases, a protocol’s session(s) may receive a mixture of offloaded and non-offloaded processing. For example, VoIP control packets may not be offloaded but VoIP data packets (voice packets) may be offloaded.

If you disable anomaly checks by Intrusion Prevention (IPS), you can still enable hardware accelerated anomaly checks using the `fp-anomaly` field of the `config system interface` CLI command. See “Offloading NP pre-IPS anomaly detection” on page 16.
NP4 traffic shaping offloading

Accelerated Traffic shaping is supported with the following limitations.

- NP4 processors support policy-based traffic shaping. However, fast path traffic and traffic handled by the FortiGate CPU (slow path) are controlled separately, which means the policy setting on fast path does not consider the traffic on the slow path.
- The port based traffic policing as defined by the inbandwidth and outbandwidth CLI commands is not supported.
- DSCP configurations are supported.
- Per-IP traffic shaping is supported.
- QoS in general is not supported.

You can also use the traffic shaping features of the FortiGate unit’s main processing resources by disabling the NP4 acceleration. See “Disabling CP offloading” on page 10.

NP4 IPsec VPN offloading

NP4 processors improve IPsec tunnel performance by offloading IPsec encryption and decryption.

Requirements for hardware accelerated IPsec encryption or decryption are a modification of general offloading requirements. Differing characteristics are:

- Origin can be local host (the FortiGate unit)
- In Phase 1 configuration, Local Gateway IP must be specified as an IP address of a network interface for a port attached to a network processor
- SA must have been received by the network processor
- in Phase 2 configuration:
 - encryption algorithm must be DES, 3DES, AES-128, AES-192, AES-256, or null
 - authentication must be MD5, SHA1, or null
 - if encryption is null, authentication must not also be null
 - if replay detection is enabled, enc-offload-antireplay must also be enable in the CLI

If replay detection is enabled in the Phase 2 configuration, you can enable or disable IPsec encryption and decryption offloading from the CLI. Performance varies by those CLI options and the percentage of packets requiring encryption or decryption. For details, see “Configuring NP accelerated VPN encryption/decryption offloading” on page 18.

To apply hardware accelerated encryption and decryption, the FortiGate unit’s main processing resources must first perform Phase 1 negotiations to establish the security association (SA). The SA includes cryptographic processing instructions required by the network processor, such as which encryption algorithms must be applied to the tunnel. After ISAKMP negotiations, the FortiGate unit’s main processing resources send the SA to the network processor, enabling the network processor to apply the negotiated hardware accelerated encryption or decryption to tunnel traffic.

Possible accelerated cryptographic paths are:

- IPsec decryption offload
 - Ingress ESP packet > Offloaded decryption > Decrypted packet egress (fast path)
• Ingress ESP packet > Offloaded decryption > Decrypted packet to FortiGate unit’s main processing resources
• IPsec encryption offload
• Ingress packet > Offloaded encryption > Encrypted (ESP) packet egress (fast path)
• Packet from FortiGate unit’s main processing resources > Offloaded encryption > Encrypted (ESP) packet egress

NP4 IPsec VPN offloading configuration example

Hardware accelerated IPsec processing, involving either partial or full offloading, can be achieved in either tunnel or interface mode IPsec configurations.

To achieve offloading for both encryption and decryption:
• In Phase 1 configuration’s Advanced section, Local Gateway IP must be specified as an IP address of a network interface associated with a port attached to a network processor. (In other words, if Phase 1’s Local Gateway IP is Main Interface IP, or is specified as an IP address that is not associated with a network interface associated with a port attached to a network processor, IPsec network processing is not offloaded.)
• In Phase 2 configuration’s P2 Proposal section, if the checkbox “Enable replay detection” is enabled, enc-offload-antireplay and dec-offload-antireplay must be set to enable in the CLI.
• offload-ipsec-host must be set to enable in the CLI.

This section contains example IPsec configurations whose IPsec encryption and decryption processing is hardware accelerated by an NP4 unit contained in a FortiGate-5001B at both ends of the VPN tunnel.

Hardware accelerated IPsec VPN does not require both tunnel endpoints to have the same network processor model. However, if hardware is not symmetrical, the packet forwarding rate is limited by the slower side.
This section includes the following topics:

- Accelerated policy mode IPsec configuration
- Accelerated interface mode IPsec configuration

Accelerated policy mode IPsec configuration

The following steps create a hardware accelerated policy mode IPsec tunnel between two FortiGate-5001B units, each containing two NP4 processors, the first of which will be used.

To configure hardware accelerated policy mode IPsec

1. On FortiGate_1, go to **VPN > IPsec > Auto Key (IKE)**.
2. Configure Phase 1.
 - For tunnel mode IPsec and for hardware acceleration, specifying the Local Gateway IP is required.
 - Select Advanced. In the Local Gateway IP section, select Specify and type the VPN IP address 3.3.3.2, which is the IP address of FortiGate_2’s FortiGate-ASM-FB4 module port 2.
3. Configure Phase 2.
4. Select Enable replay detection.
5. Use the following command to enable offloading antireplay packets:
   ```
   config system npu
   set enc-offload-antireplay enable
   end
   ```
 For details on encryption and decryption offloading options available in the CLI, see “Configuring NP accelerated VPN encryption/decryption offloading” on page 18.
6. Go to Policy > Policy > Policy.

7. Configure a policy to apply the Phase 1 IPsec tunnel you configured in step 2 to traffic between FortiGate-5001B ports 1 and 2.

8. Go to Router > Static > Static Route.

9. Configure a static route to route traffic destined for FortiGate_2’s protected network to VPN IP address of FortiGate_2’s VPN gateway, 3.3.3.2, through the FortiGate-5001B port2.

 You can also configure the static route using the following CLI command:
   ```
   config router static
   edit 2
   set device "AMC-SW1/2"
   set dst 2.2.2.0 255.255.255.0
   set gateway 3.3.3.2
   end
   ```

10. On FortiGate_2, go to VPN > IPsec > Auto Key (IKE).

11. Configure Phase 1.

 For tunnel mode IPsec and for hardware acceleration, specifying the Local Gateway IP is required.

 Select Advanced. In the Local Gateway IP section, select Specify and type the VPN IP address 3.3.3.1, which is the IP address of FortiGate_1’s port2.

12. Configure Phase 2.

13. Select Enable replay detection.

14. Use the following command to enable offloading antireplay packets:

    ```
    config system npu
    set enc-offload-antireplay enable
    end
    ```

 For details on encryption and decryption offloading options available in the CLI, see “Configuring NP accelerated VPN encryption/decryption offloading” on page 18.

15. Go to Policy > Policy > Policy.

16. Configure a policy to apply the Phase 1 IPsec tunnel you configured in step 9 to traffic between FortiGate-5001B ports 1 and 2.

17. Go to Router > Static > Static Route.

18. Configure a static route to route traffic destined for FortiGate_1’s protected network to VPN IP address of FortiGate_1’s VPN gateway, 3.3.3.1, through the FortiGate-5001B port2.

 You can also configure the static route using the following CLI commands:
    ```
    config router static
    edit 2
    set device "AMC-SW1/2"
    set dst 1.1.1.0 255.255.255.0
    set gateway 3.3.3.1
    end
    ```

19. Activate the IPsec tunnel by sending traffic between the two protected networks.

 To verify tunnel activation, go to VPN > Monitor > IPsec Monitor.

Accelerated interface mode IPsec configuration

The following steps create a hardware accelerated interface mode IPsec tunnel between two FortiGate units, each containing a FortiGate-ASM-FB4 module.
To configure hardware accelerated interface mode IPsec

1. On FortiGate_1, go to VPN > IPsec > Auto Key (IKE).

2. Configure Phase 1.

 For interface mode IPsec and for hardware acceleration, the following settings are required.

 - Select Advanced.
 - Enable the checkbox “Enable IPsec Interface Mode.”
 - In the Local Gateway IP section, select Specify and type the VPN IP address 3.3.3.2, which is the IP address of FortiGate_2’s port 2.

3. Configure Phase 2.
4. Select Enable replay detection.

5. Use the following command to enable offloading antireplay packets:

   ```
   config system npu
   set enc-offload-antireplay enable
   end
   ```

 For details on encryption and decryption offloading options available in the CLI, see “Configuring NP accelerated VPN encryption/decryption offloading” on page 18.

6. Go to Policy > Policy.

7. Configure two policies (one for each direction) to apply the Phase 1 IPsec configuration you configured in step 2 to traffic leaving from or arriving on FortiGate-ASM-FB4 module port 1.

8. Go to Router > Static.

9. Configure a static route to route traffic destined for FortiGate_2’s protected network to the Phase 1 IPsec device, FGT_1_IPsec.

 You can also configure the static route using the following CLI commands:

   ```
   config router static
   edit 2
   set device "FGT_1_IPsec"
   set dst 2.2.2.0 255.255.255.0
   end
   ```

10. On FortiGate_2, go to VPN > IPsec > Auto Key (IKE).

11. Configure Phase 1.

 For interface mode IPsec and for hardware acceleration, the following settings are required.

 - Enable the checkbox “Enable IPsec Interface Mode.”
 - In the Local Gateway IP section, select Specify and type the VPN IP address 3.3.3.1, which is the IP address of FortiGate_1’s FortiGate-5001B port 2.

12. Configure Phase 2.

13. Select Enable replay detection.

14. Use the following command to enable offloading antireplay packets:

    ```
    config system npu
    set enc-offload-antireplay enable
    end
    ```

 For details on encryption and decryption offloading options available in the CLI, see “Configuring NP accelerated VPN encryption/decryption offloading” on page 18.

15. Go to Policy > Policy.

16. Configure two policies (one for each direction) to apply the Phase 1 IPsec configuration you configured in step 9 to traffic leaving from or arriving on FortiGate-5001B port 1.

17. Go to Router > Static.
18. Configure a static route to route traffic destined for FortiGate_1’s protected network to the Phase 1 IPsec device, FGT_2_IPsec.
 You can also configure the static route using the following CLI commands:
   ```
   config router static
   edit 2
   set device "FGT_2_IPsec"
   set dst 1.1.1.0 255.255.255.0
   next
   end
   ```

19. Activate the IPsec tunnel by sending traffic between the two protected networks.
 To verify tunnel activation, go to **VPN > Monitor > IPsec Monitor**.

Configuring Inter-VDOM link acceleration with NP4 processors

FortiGate units with NP4 processors include inter-VDOM links that can be used to accelerate inter-VDOM link traffic.

- For a FortiGate unit with two NP4 processors there are also two inter-VDOM links, each with two interfaces:
 - npu0-vlink
 - npu0-vlink0
 - npu0-vlink1
 - npu1-vlink
 - npu1-vlink0
 - npu1-vlink1

These interfaces are visible from the GUI and CLI. For a FortiGate unit with NP4 interfaces, enter the following CLI command (output shown for a FortiGate-5001B):

```
get hardware npu np4 list
```

<table>
<thead>
<tr>
<th>ID</th>
<th>Model</th>
<th>Slot</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>On-board</td>
<td>port1 port2 port3 port4 fabric1 base1 npu0-vlink0 npu0-vlink1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>On-board</td>
<td>port5 port6 port7 port8 fabric2 base2 npu1-vlink0 npu1-vlink1</td>
<td></td>
</tr>
</tbody>
</table>

By default the interfaces in each inter-VDOM link are assigned to the root VDOM. To use these interfaces to accelerate inter-VDOM link traffic, assign each interface in a pair to the VDOMs that you want to offload traffic between. For example, if you have added a VDOM named New-VDOM to a FortiGate unit with NP4 processors, you can go to **System > Network > Interfaces** and edit the `npu0-vlink1` interface and set the `Virtual Domain` to `New-VDOM`. This results in an inter-VDOM link between root and New-VDOM. You can also do this from the CLI:

```
config system interface
edit npu0-vlink1
set vdom New-VDOM
end
```

Using VLANs to add more accelerated Inter-VDOM links

You can add VLAN interfaces to the accelerated inter-VDOM links to create inter-VDOM links between more VDOMs. For the links to work, the VLAN interfaces must be added to the same inter-VDOM link, must be on the same subnet, and must have the same VLAN ID.
For example, to accelerate inter-VDOM link traffic between VDOMs named Marketing and Engineering using VLANs with VLAN ID 100 go to System > Network > Interfaces and select Create New to create the VLAN interface associated with the Marketing VDOM:

<table>
<thead>
<tr>
<th>Name</th>
<th>Marketing-link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>VLAN</td>
</tr>
<tr>
<td>Interface</td>
<td>npu0-vlink0</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>100</td>
</tr>
<tr>
<td>Virtual Domain</td>
<td>Marketing</td>
</tr>
<tr>
<td>IP/Network Mask</td>
<td>172.20.120.12/24</td>
</tr>
</tbody>
</table>

Create the inter-VDOM link associated with Engineering VDOM:

<table>
<thead>
<tr>
<th>Name</th>
<th>Engineering-link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>VLAN</td>
</tr>
<tr>
<td>Interface</td>
<td>npu0-vlink1</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>100</td>
</tr>
<tr>
<td>Virtual Domain</td>
<td>Engineering</td>
</tr>
<tr>
<td>IP/Network Mask</td>
<td>172.20.120.22/24</td>
</tr>
</tbody>
</table>

Or do the same from the CLI:

```
config system interface
edit Marketing-link
set vdom Marketing
set ip 172.20.120.12/24
set interface npu0-vlink0
set vlanid 100
next
edit Engineering-link
set vdom Engineering
set ip 172.20.120.22/24
set interface npu0-vlink1
set vlanid 100
```

Confirm that the traffic is accelerated

Use the following CLI commands to obtain the interface index and then correlate them with the session entries. In the following example traffic was flowing between new accelerated inter-VDOM links and physical ports port1 and port 2 also attached to the NP4 processor.

```
diagnose ip address list
IP=172.31.17.76->172.31.17.76/255.255.252.0 index=5 devname=port1
IP=10.74.1.76->10.74.1.76/255.255.252.0 index=6 devname=port2
IP=172.20.120.12->172.20.120.12/255.255.255.0 index=55
devname=IVL-VLAN1_ROOT
```
IP=172.20.120.22->172.20.120.22/255.255.255.0 index=56
devname=IVL-VLAN1_VDOM1

diagnose sys session list

session info: proto=1 proto_state=00 duration=282 expire=24 timeout=0
session info: proto=1 proto_state=00 duration=124 expire=59
timeout=0 flags=00000000 sockflag=00000000 sockport=0 av_idx=0
use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
ha_id=0 policy_dir=0 tunnel=/
state=may_dirty npu
statistic(bytes/packets/allow_err): org=180/3/1 reply=120/2/1
tuples=2
origin->sink: org pre->post, reply pre->post dev=55->5/5->55
gwy=172.31.19.254/172.20.120.22
hook=post dir=org act=snat
10.74.2.87:768->10.2.2.2:8(172.31.17.76:62464)
hook=pre dir=reply act=dnat
10.2.2.2:62464->172.31.17.76:0(10.74.2.87:768)
misc=0 policy_id=4 id_policy_id=0 auth_info=0 chk_client_info=0 vd=0
serial=0000004e tos=ff/ff ips_view=0 app_list=0 app=0
dd_type=0 dd_mode=0
per_ip_bandwidth meter: addr=10.74.2.87, bps=880
npu_state=00000000

npu info: flag=0x81/0x81, offload=4/4, ips_offload=0/0,
epid=160/218, pipid=218/160, vlan=32769/0

session info: proto=1 proto_state=00 duration=124 expire=20 timeout=0
flags=00000000 sockflag=00000000 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
ha_id=0 policy_dir=0 tunnel=/
state=may_dirty npu
statistic(bytes/packets/allow_err): org=180/3/1 reply=120/2/1
tuples=2
origin->sink: org pre->post, reply pre->post dev=56->56/56->6
gwy=172.31.19.254/172.20.120.22
hook=post dir=org act=snat
10.74.2.87:768->10.2.2.2:8(172.31.17.76:62464)
hook=pre dir=reply act=dnat
10.2.2.2:62464->172.31.17.76:0(10.74.2.87:768)
misc=0 policy_id=3 id_policy_id=0 auth_info=0 chk_client_info=0 vd=1
serial=0000004d tos=ff/ff ips_view=0 app_list=0 app=0
dd_type=0 dd_mode=0
per_ip_bandwidth meter: addr=10.74.2.87, bps=880
npu_state=00000000

npu info: flag=0x81/0x81, offload=4/4, ips_offload=0/0,
epid=219/161, pipid=161/219, vlan=0/32769
total session 2
FortiGate NP4 architectures

This chapter shows the NP4 architecture for the following FortiGate units:

- FortiGate-600C
- FortiGate-800C
- FortiGate-1000C
- FortiGate-1240B
- FortiGate-3040B
- FortiGate-3140B
- FortiGate-3140B — load balance mode
- FortiGate-3240C
- FortiGate-3600C
- FortiGate-3950B and FortiGate-3951B
- FortiGate-5001C
- FortiGate-5001B

And includes the following reference information:

- Setting switch-mode mapping on the ADM-XD4

FortiGate-600C

The FortiGate-600C features one NP4 processor. All the ports are connected to this NP4 over the Integrated Switch Fabric. Port1 and port2 are dual failopen redundant RJ-45 ports. Port3-port22 are RJ-45 ethernet ports, and there are four 1Gb SFP interface ports duplicating the port19-port22 connections.
FortiGate-800C

The FortiGate-800C features one NP4 processor. All the ports are connected to this NP4. Port1 and port2 are dual failopen redundant RJ-45 ports. Port3-port22 are RJ-45 ethernet ports, and there are eight 1Gb SFP interface ports duplicating the port15-18 and port19-port22 connections. There are also two 10Gb SFP+ ports, port23 and port24.

![FortiGate-800C Diagram](image)

FortiGate-1000C

The FortiGate-1000C features one NP4 processor. All the ports are connected to this NP4. Port1 and port2 are dual failopen redundant RJ-45 ports. Port3-port22 are RJ-45 ethernet ports, and there are eight 1Gb SFP interface ports duplicating the port15-18 and port19-port22 connections. There are also two 10Gb SFP+ ports, port23 and port24.

![FortiGate-1000C Diagram](image)
FortiGate-1240B

The FortiGate-1240B features two NP4 processors:
- Port1-port24 are 1Gb SFP interfaces connected to one NP4 processor.
- Port25-port40 are RJ-45 ethernet ports, connected to the other NP4 processor.

FortiGate-3040B

The FortiGate-3040B features two NP4 processors:
- The 10Gb interfaces, port1, port2, port3, port4, and the 1Gb interfaces, port9, port10, port11, port12, port13, share connections to one NP4 processor.
- The 10Gb interfaces, port5, port6, port7, port8, and the 1Gb interfaces, port14, port15, port16, port17, port18, share connections to the other NP4 processor.
The FortiGate-3140B features two NP4 processors and one SP2 processor:

- The 10Gb interfaces, port1, port2, port3, port4, and the 1Gb interfaces, port9, port10, port11, port12, port13, share connections to one NP4 processor.
- The 10Gb interfaces, port5, port6, port7, port8, and the 1Gb interfaces, port14, port15, port16, port17, port18, share connections to the other NP4 processor.
- The 10Gb interfaces, port19 and port20, share connections to the SP2 processor.
FortiGate-3140B — load balance mode

The FortiGate-3140B load balance mode allows you increased flexibility in how you use the interfaces on the FortiGate unit. When enabled, traffic between any two interfaces (excluding management and console) is accelerated. Traffic is not limited to entering and leaving the FortiGate unit in specific interface groupings to benefit from NP4 and SP2 acceleration. You can use any pair of interfaces.

Security acceleration in this mode is limited, however. Only IPS scanning is accelerated in load balance mode.

To enable this feature, issue this CLI command.

```
config system global
  set sp-load-balance enable
end
```

The FortiGate unit will then restart.

To return to the default mode, issue this CLI command.

```
config system global
  set sp-load-balance disable
end
```
The FortiGate-3240C features two NP4 processors:

- The 10Gb interfaces, port1 through port6, and the 1Gb interfaces, port13 through port20, share connections to one NP4 processor.
- The 10Gb interfaces, port7 through port12, and the 1Gb interfaces, port21 through port28, share connections to the other NP4 processor.

In addition to the ports being divided between the two NP4 processors, they are further divided between the two connections to each processor. Each NP4 can process 20 Gb of network traffic per second and each of two connections to each NP4 can move 10Gb of data to the processor per second, so the ideal configuration would have no more than 10 Gb of network traffic to each connection of each NP4 at any time.
The FortiGate-3600C features three NP4 processors:

- The 10Gb interfaces, port1-port4, and the 1Gb interfaces, port13-port17, share connections to one NP4 processor.
- The 10Gb interfaces, port5-port8, and the 1Gb interfaces, port18-port22 share connections to the second NP4 processor.
- The 10Gb interfaces, port9-port12, and the 1Gb interfaces, port23-port28 share connections to the third NP4 processor.

XAUI interfaces

Each NP4 processor connects to the integrated switch fabric through two XAUI interfaces: XAUI0 and XAUI1. On each NP4 processor all of the odd numbered interfaces use XAU0 and all of the even numbered interfaces use XAUI1:

NPU1

XAUI0 = port1, port3, port13, port15, port17
XAUI1 = port2, port4, port14, port16

NPU2

XAUI0 = port5, port7, port18, port20, port22
XAUI1 = port6, port8, port19, port21
NPU3

XAUI0 = port9, port11, port23, port25, port27
XAUI1 = port10, port12, port24, port26, port28

Usually you do not have to be concerned about the XAUI interface mapping. However, if an NP4 interface is processing a very high amount of traffic you should distribute that traffic among both of the XAUI interfaces connected to it. So if you have a very high volume of traffic flowing between two networks you should connect both networks to the same NP4 processor but to different XAUI links. So between even and an add numbered FortiGate-3600C ports. For example, you could connect one network to port5 and the other network to port6. In this configuration, the second NP4 processor would handle traffic acceleration and both XAUI interfaces would be processing traffic.

FortiGate-3950B and FortiGate-3951B

The FortiGate-3950B features one NP4 processor. The 1Gb SPF interfaces, port1, port2, port3, port4, and the 10Gb SPF+ interfaces, port5, port6, share connections to one NP4 processor. The FortiGate-3951B is similar to the FortiGate-3950B, except it trades one FMC slot for four FSM slots. The network interfaces available on each model are identical.

You can add additional FMC interface modules. The diagram below shows a FortiGate-3950B with three modules installed: an FMC-XG2, an FMC-F20, and an FMC-C20.

- The FMC-XG2 has one SP2 processor. The 10Gb SPF+ interfaces, port1 and port2, share connections to the processor.
- The FMC-F20 has one NP4 processor and the twenty 1Gb SPF interfaces, port1 through port20, share connections to the NP4 processor.
- The FMC-C20 has one NP4 processor and the twenty 10/100/1000 interfaces, port1 through port20, share connections to the NP4 processor.
FortiGate-3950B and FortiGate-3951B — load balance mode

Adding one or more FMC-XG2 modules to your FortiGate-3950B allows you to enable load balance mode. This feature allows you increased flexibility in how you use the interfaces on the FortiGate unit. The FortiGate-3951B is similar to the FortiGate-3950B, except it trades one FMC slot for four FSM slots. The network interfaces available on each model are identical.

When enabled, traffic between any two interfaces (excluding management and console) is accelerated whether they are the six interfaces on the FortiGate-3950B itself, or on any installed FMC modules. Traffic is not limited to entering and leaving the FortiGate unit in specific interface groupings to benefit from NP4 and SP2 acceleration. You can use any pair of interfaces.

Security acceleration in this mode is limited, however. Only IPS scanning is accelerated in load balance mode.

Figure 5: The FortiGate-3950B in load balance mode

To enable this feature, issue this CLI command:

```
config system global
    set sp-load-balance enable
end
```

The FortiGate unit will then restart.

To return to the default mode, issue this CLI command:

```
config system global
    set sp-load-balance disable
end
```
FortiGate-5001C

The FortiGate-5001C board includes two NP4 processors connected to an integrated switch fabric:

- The port1, fabric1, and base1 interfaces are connected to one NP4 processor.
- The port2, fabric2, and base2 interfaces are connected to the other NP4 processor.

FortiGate-5001B

The FortiGate-5001B board includes two NP4 connected to an Ethernet switch. Traffic between interfaces that use the same NP4 processor experiences the highest acceleration since the FortiGate-5001B does not include an integrated switch fabric:

- The port1, port2, port3, port4, fabric1 and base1 interfaces are connected to one NP4 processor.
- The port5, port6, port7, port8, fabric2 and base2 interfaces are connected to the other NP4 processor.

For example, for maximum NP4 acceleration of traffic received on port1 the traffic must exit the FortiGate-5001B board on port2, port3, port4, or fabric1. Also, for maximum acceleration of traffic received on port5 the traffic must exit the FortiGate-5001B board on port6, port7, port8, or fabric2.
Setting switch-mode mapping on the ADM-XD4

The ADM-XD4 SP has four 10Gb/s ports, but the NP4 processor it contains has only two 10Gb/s ports. The external ports you use are important to optimize the SP for your application.

Figure 6: ADM-XD4 mapping mode

Ports 1 and 3 share one NP4 processor and ports 2 and 4 share the other. Performance ports sharing the same NP4 processor is far better than when forcing network data to move between NP4 processors by using one port from each, for example ports 1 and 2 or ports 3 and 4.