FortiOS™ Handbook
Load Balancing for FortiOS 5.0
Table of Contents

Change Log.. 4

Introduction... 5
- Before you begin... 5
- How this chapter is organized .. 5

Configuring load balancing .. 6
- Load balancing overview .. 6
 - Load balancing, UTM, authentication, and other FortiOS features 7
 - Configuring load balancing virtual servers ... 7
 - Load balancing methods ... 10
- Session persistence ... 11
- Real servers .. 11
- Health check monitoring ... 13
- Monitoring load balancing ... 15
- Load balancing get command .. 16
- Load balancing diagnose commands .. 16
- Logging Diagnostics .. 17
- Real server diagnostics ... 18
- Basic load balancing configuration example .. 18
- HTTP and HTTPS load balancing, multiplexing, and persistence .. 22
 - HTTP and HTTPS multiplexing ... 23
 - HTTP and HTTPS persistence .. 23
 - HTTP host-based load balancing ... 26
- SSL/TLS load balancing .. 27
 - SSL offloading .. 28
- IP, TCP, and UDP load balancing .. 35

Load balancing configuration examples... 36
- Example: HTTP load balancing to three real web servers ... 36
 - Web-based manager configuration ... 37
 - CLI configuration ... 40
- Example: Basic IP load balancing configuration .. 42
- Example: Adding a server load balance port forwarding virtual IP 42
- Example: Weighted load balancing configuration .. 44
 - Web-based manager configuration ... 44
 - CLI configuration ... 47
- Example: HTTP and HTTPS persistence configuration ... 48
 - CLI configuration: adding persistence for a specific domain ... 51

Index ... 53
Change Log

<table>
<thead>
<tr>
<th>Date</th>
<th>Change Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-11-06</td>
<td>New FortiOS 5.0 release.</td>
</tr>
<tr>
<td></td>
<td>Added section “Before you begin” on page 5.</td>
</tr>
</tbody>
</table>
Introduction

FortiOS server load balancing includes the features you would expect of any server load balancing solution. Traffic can be distributed across multiple backend servers based on multiple methods including static (failover), round robin, weighted to account for different sized servers, or based on the health and performance of the server including round trip time, number of connections. The load balancer supports HTTP, HTTPS, IMAPS, POP3S, SMTPS, SSL or generic TCP/UDP or IP protocols. Session persistence is supported based on the SSL session ID or based on an injected HTTP cookie.

Before you begin

Before you begin to configure load balancing, take a moment to note the following:
• To be able to configure load balancing from the web-based manager you should begin by going to the System Information dashboard widget and enabling Load Balance.

How this chapter is organized

This document contains detailed information about how to configure firewall server load balancing to load balance various types of traffic to multiple backend servers. This document describes all server load balancing configuration options and contains detailed configuration examples.

This FortiOS Handbook chapter contains the following sections:
Configuring load balancing describes FortiGate firewall load balancing.
Load balancing configuration examples describes includes basic and advanced load balancing configurations.
Configuring load balancing

This section describes how to use the FortiGate firewall load balancing configuration to load balance traffic to multiple backend servers.

This section describes:

- Load balancing overview
- Basic load balancing configuration example
- HTTP and HTTPS load balancing, multiplexing, and persistence
- SSL/TLS load balancing
- IP, TCP, and UDP load balancing

Load balancing overview

You can configure FortiOS load balancing to intercept incoming traffic with a virtual server and share it among one or more backend real servers. By doing so, the FortiGate unit enables multiple real servers to respond as if they were a single device or virtual server. This in turn means that more simultaneous requests can be handled.

Figure 1: Load balancing configuration

Traffic can be balanced across multiple backend real servers based on a selection of load balancing methods including static (failover), round robin, weighted to account for different sized servers, or based on the health and performance of the server including round trip time, number of connections. The load balancer can balance layer 7 HTTP, HTTPS, SSL, generic layer...
4 TCP, UDP and generic layer 3 IP protocols. Session persistence is supported based on injected HTTP/HTTPS cookies or the SSL session ID.

You can bind up to 8 real servers to one virtual server. The real server topology is transparent to end users, and the users interact with the system as if it were only a single server with the IP address and port number of the virtual server. The real servers may be interconnected by high-speed LAN or by geographically dispersed WAN. The FortiGate unit schedules requests to the real servers and makes parallel services of the virtual server to appear to involve a single IP address.

There are additional benefits to load balancing. First, because the load is distributed across multiple servers, the service being provided can be highly available. If one of the servers breaks down, the load can still be handled by the other servers. Secondly, this increases scalability. If the load increases substantially, more servers can be added behind the FortiGate unit in order to cope with the increased load.

Load balancing, UTM, authentication, and other FortiOS features

Flow-based and proxy-based UTM features such as virus scanning, IPS, DLP, application control, and web filtering can be applied to sessions that are to be load balanced. This includes SSL offloading and multiplexing. Applying these UTM features to load balancing traffic may reduce load balancing performance.

Authentication and dynamic profiles are not supported for load balancing sessions. Usually FortiGate load balancing is used to allow public access to services on servers protected by a FortiGate unit. Authentication is not generally not required for this kind of configuration.

Features such web proxying, web caching, and WAN optimization also do not work with load balanced sessions. However, most other features that can be applied by a security policy are supported.

Configuring load balancing virtual servers

A virtual server is a specialized firewall virtual IP that performs server load balancing. From the web-based manager you add load balancing virtual server by going to **Firewall Objects > Load Balance > Virtual Server**.

<table>
<thead>
<tr>
<th>Name</th>
<th>Enter the name for the virtual server.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Select Change beside the icon to change the color of the icon. When you select Change, a color palette window appears; select a color from the palette window.</td>
</tr>
</tbody>
</table>
Type
Select the protocol to be load balanced by the virtual server. If you select a general protocol such as IP, TCP, or UDP the virtual server load balances all IP, TCP, or UDP sessions. If you select specific protocols such as HTTP, HTTPS, or SSL you can apply additional server load balancing features such as Persistence and HTTP Multiplexing.

- Select HTTP to load balance only HTTP sessions with destination port number that matches the Virtual Server Port setting. Change Virtual Server Port to match the destination port of the sessions to be load balanced (usually port 80 for HTTP sessions). You can also select HTTP Multiplex. You can also set Persistence to HTTP Cookie to select cookie-based persistence.

- Select HTTPS to load balance only HTTPS sessions with destination port number that matches the Virtual Server Port setting. Change Virtual Server Port to match the destination port of the sessions to be load balanced (usually port 443 for HTTPS sessions). You can also select Multiplex HTTP requests/responses. You can also set Persistence to HTTP Cookie to select cookie-based persistence. You can also set Persistence to SSL Session ID.

- Select IMAPS to load balance only IMAPS sessions with destination port number that matches the Virtual Server Port setting. Change Virtual Server Port to match the destination port of the sessions to be load balanced (usually port 993 for IMAPS sessions). You can also set Persistence to SSL Session ID.

- Select POP3S to load balance only POP3S sessions with destination port number that matches the Virtual Server Port setting. Change Virtual Server Port to match the destination port of the sessions to be load balanced (usually port 995 for POP3S sessions). You can also set Persistence to SSL Session ID.

- Select SMTPS to load balance only SMTPS sessions with destination port number that matches the Virtual Server Port setting. Change Virtual Server Port to match the destination port of the sessions to be load balanced (usually port 465 for SMTPS sessions). You can also set Persistence to SSL Session ID.

- Select SSL to load balance only SSL sessions with destination port number that matches the Virtual Server Port setting. Change Virtual Server Port to match the destination port of the sessions to be load balanced.

- Select TCP to load balance only TCP sessions with destination port number that matches the Virtual Server Port setting. Change Virtual Server Port to match the destination port of the sessions to be load balanced.

- Select UDP to load balance only UDP sessions with destination port number that matches the Virtual Server Port setting. Change Virtual Server Port to match the destination port of the sessions to be load balanced.

- Select IP to load balance all sessions accepted by the security policy that contains this virtual server.

Interface
Select the virtual server external interface from the list. The external interface is connected to the source network and receives the packets to be forwarded to the destination network.

Virtual Server IP
The IP address of the virtual server. This is an IP address on the external interface that you want to map to an address on the destination network.
To configure a virtual server from the CLI, you need to:

```
config firewall vip
edit Vserver-HTTP-1
    set type server-load-balance
    ...
```

A virtual server includes a virtual server IP address bound to an interface. The virtual server IP address is the destination address for incoming packets to be load balanced, and the virtual server is bound to the interface that receives the packets to be load balanced.

For example, if you want to load balance incoming HTTP traffic from the Internet to a group of web servers on a DMZ network, the virtual server IP address is the known Internet IP address of the web servers, and the virtual server binds this IP address to the FortiGate interface connected to the Internet.

When you bind the virtual server’s external IP address to a FortiGate unit interface, by default, the network interface responds to ARP requests for the bound IP address. Virtual servers use proxy ARP, as defined in RFC 1027, so that the FortiGate unit can respond to ARP requests on a network for a real server that is actually installed on another network. In some cases you may need to configure persistence to ensure that a user is connected to the same server every time they make a request that is part of the same session.

Virtual Server Port
Enter the external port number that you want to map to a port number on the destination network. Sessions with this destination port are load balanced by this virtual server.

Load Balance Method
Select the load balancing method used by the virtual server. See “Load balancing methods” on page 10.

Persistence
Configure persistence to make sure that a user is connected to the same server every time they make a request that is part of the same session. Session persistence is supported for HTTP and SSL sessions. See “Session persistence” on page 11. For HTTP and HTTPS sessions, see “HTTP and HTTPS persistence” on page 23.

HTTP Multiplexing
Select to use the FortiGate unit to multiplex multiple client connections into a few connections between the FortiGate unit and the real server. See “HTTP and HTTPS multiplexing” on page 23.

Preserve Client IP
Select to preserve the IP address of the client in the X-Forwarded-For HTTP header. This can be useful if you want log messages on the real servers to include the client’s original IP address. If this option is not selected, the header will contain the IP address of the FortiGate unit.

This option appears only if HTTP or HTTPS are selected for Type, and is available only if HTTP Multiplexing is selected.

SSL Offloading
Select to accelerate clients’ SSL connections to the server by using the Fortinet FortiGate unit to perform SSL operations, then select which segments of the connection will receive SSL offloading. See “SSL offloading” on page 28.

Certificate
Select the certificate to use with SSL Offloading. The certificate key size must be 1024 or 2048 bits. 4096-bit keys are not supported.

This option appears only if HTTPS or SSL are selected for Type, and is available only if SSL Offloading is selected.

Health Check
Select which health check monitor configuration will be used to determine a server’s connectivity status. See “Health check monitoring” on page 13.
not want the network interface sending ARP replies. You can use the `arp-reply` option disable sending ARP replies:

```plaintext
config firewall vip
  edit Vserver-HTTP-1
    set type server-load-balance
    set arp-reply disable
  ...
```

The load balancing virtual server configuration also includes the virtual server port. This is the TCP port on the bound interface that the virtual server listens for traffic to be load balanced on. The virtual server can listen on any port.

Load balancing methods

The load balancing method defines how sessions are load balanced to real servers. A number of load balancing methods are available as listed in Table 1.

All load balancing methods will not send traffic to real servers that are down or not responding. However, the FortiGate unit can only determine if a real server is not responding by using a health check monitor. You should always add at least one health check monitor to a virtual server or to individual real servers, or load balancing methods may attempt to distribute sessions to real servers that are not functioning.

Table 1: Load balancing methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP Hash</td>
<td>The traffic load is statically spread evenly across all real servers. However, sessions are not assigned according to how busy individual real servers are. This load balancing method provides some persistence because all sessions from the same source address always go to the same real server. However, the distribution is stateless, so if a real server is added or removed (or goes up or down) the distribution is changed and persistence could be lost.</td>
</tr>
<tr>
<td>Round Robin</td>
<td>Directs new requests to the next real server, and treats all real servers as equals regardless of response time or number of connections. Dead real servers or non responsive real servers are avoided.</td>
</tr>
<tr>
<td>Weighted</td>
<td>Real servers with a higher weight value receive a larger percentage of connections. Set the real server weight when adding a real server.</td>
</tr>
<tr>
<td>First Alive</td>
<td>Always directs sessions to the first alive real server. This load balancing schedule provides real server failover protection by sending all sessions to the first alive real server and if that real server fails, sending all sessions to the next alive real server. Sessions are not distributed to all real servers so all sessions are processed by the “first” real server only. First refers to the order of the real servers in the virtual server configuration. For example, if you add real servers A, B and C in that order, then all sessions always go to A as long as it is alive. If A goes down then sessions go to B and if B goes down sessions go to C. If A comes back up sessions go back to A. Real servers are ordered in the virtual server configuration in the order in which you add them, with the most recently added real server last. If you want to change the order you must delete and re-add real servers in the required order.</td>
</tr>
<tr>
<td>Least RTT</td>
<td>Directs sessions to the real server with the least round trip time. The round trip time is determined by a Ping health check monitor and is defaulted to 0 if no Ping health check monitors are added to the virtual server.</td>
</tr>
</tbody>
</table>
Session persistence

Use persistence to make sure that a user is connected to the same real server every time they make an HTTP, HTTPS, or SSL request that is part of the same user session. For example, if you are load balancing HTTP and HTTPS sessions to a collection of eCommerce web servers, when a user is making a purchase they will be starting multiple sessions as they navigate the eCommerce site. In most cases all of the sessions started by this user during on eCommerce session should be processed by the same real server. Typically, the HTTP protocol keeps track of these related sessions using cookies. HTTP cookie persistence makes sure that all sessions that are part of the same user session are processed by the same real server.

When you configure persistence, the FortiGate unit load balances a new session to a real server according to the load balance method. If the session has an HTTP cookie or an SSL session ID, the FortiGate unit sends all subsequent sessions with the same HTTP cookie or SSL session ID to the same real server. For more information about HTTP and HTTPS persistence, see “HTTP and HTTPS persistence” on page 23.

Real servers

Add real servers to a load balancing virtual server to provide the information the virtual server requires to be able to send sessions to the server. A real server configuration includes the IP address of the real server and port number that the real server receives sessions on. The FortiGate unit sends sessions to the real server’s IP address using the destination port number in the real server configuration.

When configuring a real server you can also specify the weight (used if the load balance method is set to weighted) and you can limit the maximum number of open connections between the FortiGate unit and the real server. If the maximum number of connections is reached for the real server, the FortiGate unit will automatically switch all further connection requests other real servers until the connection number drops below the specified limit. Setting Maximum Connections to 0 means that the FortiGate unit does not limit the number of connections to the real server.

Real server active, standby, and disabled modes

By default the real server mode setting is active indicating that the real server is available to receive connections. If the real server is removed from the network (for example, for routine maintenance or because of a hardware or software failure) you can change the mode to standby or disabled. In disabled mode the FortiGate unit no longer sends sessions to the real server.
If a real server is in standby mode the FortiGate also does not send sessions to it unless other real servers added to the same virtual server become unavailable. For example:

- A virtual server that includes two real servers one in active mode and one in standby mode. If the real server in active mode fails, the real server in standby mode is changed to active mode and all sessions are sent to this real server.
- A virtual server includes three real servers, two in active mode and one in standby mode, if one of the real servers in active mode fails, the real server in standby mode is changed to active mode and sessions are load balanced between it and still operating real server. If both real servers in active mode fail, all sessions are sent to the real server in standby mode.

Adding real servers

To add a real server from the web-based manager go to Firewall Objects > Load Balance > Real Server.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Server</td>
<td>Select the virtual server that will send sessions to this real server.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Enter the IP address of the real server.</td>
</tr>
<tr>
<td>Port</td>
<td>Enter the port number on the destination network to which the external port number is mapped.</td>
</tr>
<tr>
<td>Weight</td>
<td>Enter the weight value of the real server. The higher the weight value, the higher the percentage of connections the server will handle. A range of 1-255 can be used. This option is available only if the associated virtual server’s load balance method is Weighted.</td>
</tr>
<tr>
<td>Max Connections</td>
<td>Enter the limit on the number of active connections directed to a real server. A range of 1-99999 can be used. If the maximum number of connections is reached for the real server, the FortiGate unit will automatically switch all further connection requests to another server until the connection number drops below the specified limit. Setting Maximum Connections to 0 means that the FortiGate unit does not limit the number of connections to the real server.</td>
</tr>
<tr>
<td>HTTP Host</td>
<td>Enter the HTTP header for load balancing across multiple real servers. This feature is used for load balancing HTTP host connections across multiple real servers using the host’s HTTP header to guide the connection to the correct real server, providing better load balancing for those specific connections.</td>
</tr>
<tr>
<td>Mode</td>
<td>Select a mode for the real server.</td>
</tr>
</tbody>
</table>

To add a real server from the CLI you configure a virtual server and add real servers to it. For example, to add three real servers to a virtual server that load balances UDP sessions on port 8190 using weighted load balancing. For each real server the port is not changed. The default real server port is 0 resulting in the traffic being sent the real server with destination port 8190.
Each real server is given a different weight. Servers with higher weights have a max-connections limit to prevent too many sessions from being sent to them.

```plaintext
config firewall vip
edit Vserver-UDP-1
    set type server-load-balance
    set server-type udp
    set ldb-method weighted
    set extip 172.20.120.30
    set extintf wan1
    set extport 8190
    set monitor ping-mon-1
    config realservers
        edit 1
            set ip 10.31.101.30
            set weight 100
            set max-connections 10000
        next
        edit 2
            set ip 10.31.101.40
            set weight 100
            set max-connections 10000
        next
        edit 3
            set ip 10.31.101.50
            set weight 10
    end
end
```

Health check monitoring

From the FortiGate web-based manager you can go to *Firewall Objects > Load Balance > Health Check* and configure health check monitoring so that the FortiGate unit can verify that real servers are able to respond to network connection attempts. If a real server responds to connection attempts the load balancer continues to send sessions to it. If a real server stops responding to connection attempts the load balancer assumes that the server is down and does not send sessions to it. The health check monitor configuration determines how the load balancer tests the real servers. You can use a single health check monitor for multiple load balancing configurations.

You can configure TCP, HTTP and Ping health check monitors. Usually you would want the health check monitor to use the same protocol for checking the health of the server as the traffic being load balanced to it. For example, for an HTTP load balancing configuration you would normally use an HTTP health check monitor.

For the TCP and HTTP health check monitors you can specify the destination port to use to connect to the real servers. If you set the port to 0, the health check monitor uses the port defined in the real server. This allows you to use the same health check monitor for multiple real servers using different ports. You can also configure the interval, timeout and retry. A health check occurs every number of seconds indicated by the interval. If a reply is not received within the timeout period the health check is repeated. If no response is received after the number of configured retries, the virtual server is considered unresponsive, and load balancing will disabling traffic to that real server. The health check monitor will continue to contact the real
server and if successful, the load balancer can resume sending sessions to the recovered real server.

For HTTP health check monitors, you can add URL that the FortiGate unit connects to when sending a get request to check the health of a HTTP server. The URL should match an actual URL for the real HTTP servers. The URL is optional.

The URL would not usually include an IP address or domain name. Instead it should start with a “/” and be followed by the address of an actual web page on the real server. For example, if the IP address of the real server is 10.31.101.30, the URL “/test_page.htm” causes the FortiGate unit to send an HTTP get request to “http://10.31.101.30/test_page.htm”.

For HTTP health check monitors, you can also add a matched content phrase that a real HTTP server should include in response to the get request sent by the FortiGate unit using the content of the URL option. If the URL returns a web page, the matched content should exactly match some of the text on the web page. You can use the URL and Matched Content options to verify that an HTTP server is actually operating correctly by responding to get requests with expected web pages. Matched content is only required if you add a URL.

For example, you can set matched content to “server test page” if the real HTTP server page defined by the URL option contains the phrase “server test page”. When the FortiGate unit receives the web page in response to the URL get request, the system searches the content of the web page for the matched content phrase.

<table>
<thead>
<tr>
<th>Name</th>
<th>Enter the name of the health check monitor configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Select the protocol used to perform the health check.</td>
</tr>
<tr>
<td></td>
<td>• TCP</td>
</tr>
<tr>
<td></td>
<td>• HTTP</td>
</tr>
<tr>
<td></td>
<td>• PING</td>
</tr>
<tr>
<td>Port</td>
<td>Enter the port number used to perform the health check.</td>
</tr>
<tr>
<td></td>
<td>If you set the Port to 0, the health check monitor uses</td>
</tr>
<tr>
<td></td>
<td>the port defined in the real server. This way you can</td>
</tr>
<tr>
<td></td>
<td>use a single health check monitor for different real</td>
</tr>
<tr>
<td></td>
<td>servers. This option does not appear if the Type is PING.</td>
</tr>
<tr>
<td>Interval</td>
<td>Enter the number of seconds between each server health</td>
</tr>
<tr>
<td></td>
<td>check.</td>
</tr>
<tr>
<td>URL</td>
<td>For HTTP health check monitors, add a URL that the Forti</td>
</tr>
<tr>
<td></td>
<td>Gate unit uses when sending a get request to check the</td>
</tr>
<tr>
<td></td>
<td>health of a HTTP server. The URL should match an</td>
</tr>
<tr>
<td></td>
<td>actual URL for the real HTTP servers. The URL is optional.</td>
</tr>
<tr>
<td></td>
<td>The URL would not usually include an IP address or domain</td>
</tr>
<tr>
<td></td>
<td>name. Instead it should start with a “/” and be</td>
</tr>
<tr>
<td></td>
<td>followed by the address of an actual web page on the</td>
</tr>
<tr>
<td></td>
<td>real server. For example, if the IP address of the real</td>
</tr>
<tr>
<td></td>
<td>server is 10.10.10.1, the URL “/test_page.htm” causes</td>
</tr>
<tr>
<td></td>
<td>the FortiGate unit to send an HTTP get request to “http://10.10.10.1/test_page.htm”. This option appears only if Type is HTTP.</td>
</tr>
</tbody>
</table>
Virtual IP, load balance virtual server and load balance real server limitations

The following limitations apply when adding virtual IPs, Load balancing virtual servers, and load balancing real servers. Load balancing virtual servers are actually server load balancing virtual IPs. You can add server load balance virtual IPs from the CLI.

- Virtual IP External IP Address/Range entries or ranges cannot overlap with each other or with load balancing virtual server Virtual Server IP entries.
- A virtual IP Mapped IP Address/Range cannot be 0.0.0.0 or 255.255.255.255.
- A real server IP cannot be 0.0.0.0 or 255.255.255.255.
- If a static NAT virtual IP External IP Address/Range is 0.0.0.0, the Mapped IP Address/Range must be a single IP address.
- If a load balance virtual IP External IP Address/Range is 0.0.0.0, the Mapped IP Address/Range can be an address range.
- When port forwarding, the count of mapped port numbers and external port numbers must be the same. The web-based manager does this automatically but the CLI does not.
- Virtual IP and virtual server names must be different from firewall address or address group names.

Monitoring load balancing

From the web-based manager you can go to Firewall Objects > Monitor > Load Balance Monitor to monitor the status of configured virtual servers and real server and start or stop the real servers. You can also use the `get test ipldb` command from the CLI to display similar information.

For each real server the monitor displays health status (up or down), active sessions, round trip time and the amount of bytes of data processed. From the monitor page you can also stop sending new sessions to any real server. When you select to stop sending sessions the FortiGate unit performs of graceful stop by continuing to send data for sessions that were established or persistent before you selected stop. However, no new sessions are started.
Load balancing get command

The following get command is available to display testing and debug information for the FortiGate virtual server process:

```
get test vs <test-level_int>
```

Where `<test-level_int>` can be:

- **3** to display the virtual server process id.
- **8** to display the virtual server log configuration.
- **30** to display the virtual server configuration statistics.
- **99** to restart the virtual server process.

Load balancing diagnose commands

You can also use the following diagnose commands to view status information for load balancing virtual servers and real servers:

```
diagnose firewall vip realserver {down | flush | healthcheck | list | up}
diagnose firewall vip virtual-server {filter | log | real-server | session | stats}
```
For example, the following command lists and displays status information for all real servers:

```
diagnose firewall vip virtual-server real-server
```

```
v d root/0  vs vs/2  addr 10.31.101.30:80  status 1/1
 conn: max 0  active 0  attempts 0  success 0  drop  0  fail 0
```

```
v d root/0  vs vs/2  addr 10.31.101.20:80  status 1/1
 conn: max 0  active 0  attempts 0  success 0  drop  0  fail 0
```

Many of the diagnostic commands involve retrieving information about one or more virtual servers. To control which servers are queried you can define a filter:

```
diagnose firewall vip virtual-server filter <filter_str>
```

Where `<filter_str>` can be:

- `clear` erase the current filter
- `dst` the destination address range to filter by
- `dst-port` the destination port range to filter by
- `list` display the current filter
- `name` the vip name to filter by
- `negate` negate the specified filter parameter
- `src` the source address range to filter by
- `src-port` the source port range to filter by
- `vd` index of virtual domain. -1 matches all

The default filter is empty so no filtering is done.

Logging Diagnostics

The logging diagnostics provide information about two separate features:

```
diagnose firewall vip virtual-server log {console | filter}
```

Where

- `console {disable | enable}` enables or disables displaying the event log messages generated by virtual server traffic on the console to simplify debugging.
- `filter` sets a filter for the virtual server debug log

The filter option controls what entries the virtual server daemon will log to the console if `diagnose debug application vs level` is non-zero. The filtering can be done on source, destination, virtual-server name, virtual domain, and so on:

```
diagnose firewall vip virtual-server log filter <filter_str>
```

Where `<filter_str>` can be:

- `clear` erase the current filter
- `dst` the destination address range to filter by
- `dst-port` the destination port range to filter by
- `list` display the current filter
- `name` the virtual-server name to filter by
- `negate` negate the specified filter parameter
src the source address range to filter by
src-port the source port range to filter by
vd index of virtual domain. -1 matches all
The default filter is empty so no filtering is done.

Real server diagnostics

Enter the following command to list all the real servers:
```
diag firewall vip virtual-server real-server list
```
In the following example there is only one virtual server called slb and it has two real-servers:
```
diag firewall vip virtual-server server
vd root/0  vs slb/2  addr 172.16.67.191:80  status 1/1
  conn: max 10  active 0  attempts 0  success 0  drop 0  fail 0
  http: available 0  total 0

vd root/0  vs slb/2  addr 172.16.67.192:80  status 1/1
  conn: max 10  active 1  attempts 4  success 4  drop 0  fail 0
  http: available 1  total 1
```
The **status** indicates the administrative and operational status of the real-server.

max indicates that the real-server will only allow 10 concurrent connections.

active is the number of current connections to the server

attempts is the total number of connections attempted

success is the total number of connections that were successful.

drop is the total number of connections that were dropped because the active count hit max.

fail is the total number of connections that failed to complete due to some internal problem (for example, lack of memory).

If the virtual server has HTTP multiplexing enabled then the HTTP section indicates how many established connections to the real-server are available to service a HTTP request and also the total number of connections.

Basic load balancing configuration example

This section describes the steps required to configure the load balancing configuration shown in Figure 2. In this configuration a FortiGate-51B unit is load balancing HTTP traffic from the Internet to three HTTP servers on the Internal network. HTTP sessions are accepted at the wan1 interface with destination IP address 172.20.120.121 on TCP port 8080 and forwarded from the internal interface to the web servers. When forwarded the destination address of the sessions is translated to the IP address of one of the web servers.

The load balancing configuration also includes session persistence using HTTP cookies, round-robin load balancing, and TCP health monitoring for the real servers. Ping health monitoring consists of the FortiGate unit using ICMP ping to make sure the web servers can respond to network traffic.
To configure the example load balancing configuration - general configuration steps

1. Add a load balance ping health check monitor.
 A ping health check monitor causes the FortiGate unit to ping the real servers every 10 seconds. If one of the servers does not respond within 2 seconds, the FortiGate unit will retry the ping 3 times before assuming that the HTTP server is not responding.

2. Add a load balance virtual server.

3. Add the three load balance real servers. Include the virtual server in each real server configuration.

4. Add a security policy that includes the load balance virtual server as the destination address.

To configure the example load balancing configuration - web-based manager

1. Go to Firewall Objects > Load Balance > Health Check and add the following health check monitor.

<table>
<thead>
<tr>
<th>Name</th>
<th>Ping-mon-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Ping</td>
</tr>
<tr>
<td>Interval</td>
<td>10 seconds</td>
</tr>
<tr>
<td>Timeout</td>
<td>2 seconds</td>
</tr>
<tr>
<td>Retry</td>
<td>3</td>
</tr>
</tbody>
</table>
2. Go to Firewall Objects > Load Balance > Virtual Server and add virtual server that accepts the traffic to be load balanced.

<table>
<thead>
<tr>
<th>Name</th>
<th>Vserver-HTTP-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>HTTP</td>
</tr>
<tr>
<td>Interface</td>
<td>wan1</td>
</tr>
<tr>
<td>Virtual Server IP</td>
<td>172.20.120.121</td>
</tr>
<tr>
<td>Virtual Server Port</td>
<td>8080</td>
</tr>
<tr>
<td>Load Balance Method</td>
<td>Round Robin</td>
</tr>
<tr>
<td>Persistence</td>
<td>HTTP Cookie</td>
</tr>
<tr>
<td>HTTP Multiplexing</td>
<td>Do not select</td>
</tr>
<tr>
<td>Health Check</td>
<td>Move Ping-mon-1 to the Selected list.</td>
</tr>
</tbody>
</table>

3. Go to Firewall Objects > Load Balance > Real Server and add the real servers.

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>Vserver-HTTP-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.31.101.30</td>
</tr>
<tr>
<td>Port</td>
<td>80</td>
</tr>
<tr>
<td>Weight</td>
<td>n/a</td>
</tr>
<tr>
<td>Max Connections</td>
<td>0</td>
</tr>
<tr>
<td>Mode</td>
<td>Active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>Vserver-HTTP-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.31.101.40</td>
</tr>
<tr>
<td>Port</td>
<td>80</td>
</tr>
<tr>
<td>Weight</td>
<td>n/a</td>
</tr>
<tr>
<td>Max Connections</td>
<td>0</td>
</tr>
<tr>
<td>Mode</td>
<td>Active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>Vserver-HTTP-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.31.101.50</td>
</tr>
<tr>
<td>Port</td>
<td>80</td>
</tr>
<tr>
<td>Weight</td>
<td>n/a</td>
</tr>
</tbody>
</table>
4 Go to Policy > Policy > Policy and add a wan1 to internal security policy that includes the virtual server. This policy also applies an Antivirus profile to the load balanced sessions.

<table>
<thead>
<tr>
<th>Max Connections</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Active</td>
</tr>
</tbody>
</table>

5. Select OK.

To configure the example load balancing configuration- CLI

1 Use the following command to add a Ping health check monitor.
   ```
cfg firewall ldb-monitor
    edit ping-mon-1
    set type ping
    set interval 10
    set timeout 2
    set retry 3
    end
   ```
2. Use the following command to add the virtual server that accepts HTTP sessions on port 8080 at the `wan1` interface and load balances the traffic to three real servers.

```plaintext
config firewall vip
edit Vserver-HTTP-1
  set type server-load-balance
  set server-type http
  set ldb-method round-robin
  set extip 172.20.120.30
  set extintf wan1
  set extport 8080
  set persistence http-cookie
  set monitor tcp-mon-1
  config realservers
    edit 1
      set ip 10.31.101.30
      set port 80
    next
    edit 2
      set ip 10.31.101.40
      set port 80
  end
end
```

3. Use the following command to add a security policy that includes the load balance virtual server as the destination address.

```plaintext
config firewall policy
edit 0
  set srcintf wan1
  set srcaddr all
  set dstintf internal
  set dstaddr Vserver-HTTP-1
  set action accept
  set schedule always
  set service ALL
  set nat enable
  set utm-status enable
  set profile-protocol-options default
  set av-profile scan
end
```

HTTP and HTTPS load balancing, multiplexing, and persistence

In a firewall load balancing virtual server configuration, you can select HTTP to load balance only HTTP sessions. The virtual server will load balance HTTP sessions received at the virtual server interface with destination IP address that matches the configured virtual server IP and destination port number that matches the configured virtual server port. The default virtual server port for HTTP load balancing is 80, but you can change this to any port number. Similarly for HTTPS load balancing, set the virtual server type to HTTPS and then select the interface, virtual server IP, and virtual server port that matches the HTTPS traffic to be load balanced. Usually HTTPS traffic uses port 443.
You can also configure load balancing to offload SSL processing for HTTPS and SSL traffic. See “SSL offloading” on page 28 for more information.

HTTP and HTTPS multiplexing

For both HTTP and HTTPS load balancing you can multiplex HTTP requests and responses over a single TCP connection. HTTP multiplexing is a performance saving feature of HTTP/1.1 compliant web servers that provides the ability to pipeline many unrelated HTTP or HTTPS requests on the same connection. This allows a single HTTPD process on the server to interleave and serve multiple requests. The result is fewer idle sessions on the web server so server resources are used more efficiently. HTTP multiplexing can take multiple separate inbound sessions and multiplex them over the same internal session. This may reduce the load on the backend server and increase the overall performance.

HTTP multiplexing may improve performance in some cases. For example, if users web browsers are only compatible with HTTP 1.0. HTTP multiplexing can also improve performance between a web server and the FortiGate unit if the FortiGate unit is performing SSL acceleration. However, in most cases HTTP multiplexing should only be used if enabling it leads to a measurable improvement in performance.

To enable HTTP multiplexing from the web-based manager, select multiplex HTTP requests/responses over a single TCP connection. To enable HTTP multiplexing from the CLI enable the `http-multiplex` option.

Preserving the client IP address

Select preserve client IP from the web-based manager or enable the `http-ip-header` option from the CLI to preserve the IP address of the client in the X-Forwarded-For HTTP header. This can be useful in an HTTP multiplexing configuration if you want log messages on the real servers to the client’s original IP address. If this option is not selected, the header will contain the IP address of the FortiGate unit.

HTTP and HTTPS persistence

Configure load balancing persistence for HTTP or HTTPS to make sure that a user is connected to the same server every time they make a request that is part of the same session. HTTP cookie persistence uses injected cookies to enable persistence.

When you configure persistence, the FortiGate unit load balances a new session to a real server according to the Load Balance Method. If the session has an HTTP cookie or an SSL session ID, the FortiGate unit sends all subsequent sessions with the same HTTP cookie or SSL session ID to the same real server.
The following example shows how to enable cookie persistence and set the cookie domain to .example.org.

```plaintext
config firewall vip
  edit HTTP_Load_Balance
    set type server-load-balance
    set server-type http
    set extport 8080
    set extintf port2
    set extip 192.168.20.20
    set persistence http-cookie
    set http-cookie-domain .example.org
  config realservers
    edit 1
      set ip 10.10.10.1
      set port 80
    next
    edit 2
      set ip 10.10.10.2
      set port 80
    next
    edit 3
      set ip 10.10.10.3
      set port 80
  end
end
```

How HTTP cookie persistence options work

The following options are available for the `config firewall vip` command when `type` is set to `server-load-balance`, `server-type` is set to `http` or `https` and `persistence` is set to `http-cookie`:

- `http-cookie-domain-from-host`
- `http-cookie-domain`
- `http-cookie-path`
- `http-cookie-generation`
- `http-cookie-age`
- `http-cookie-share`
- `https-cookie-share`

When HTTP cookie persistence is enabled the FortiGate unit inserts a header of the following form into each HTTP response unless the corresponding HTTP request already contains a FGTServer cookie:

```
Set-Cookie: FGTServer=E7D01637C4B08E89A6714213A9D85D9C7E4D8158; Version=1; Max-Age=3600
```

The value of the FGTServer cookie encodes the server that traffic should be directed to. The value is encoded so as to not leak information about the internal network.

Enable `http-cookie-domain-from-host` to extract the cookie domain from the host header in the HTTP request. For example, to restrict the cookie to .server.com, enter:
The generated cookies could have the following form if the Host: header contains `exhost.com`:

```
Set-Cookie: FGTServer=E7D01637C4B08E89A6714213A9D85D9C7E4D8158; Version=1; Domain=.exhost.com; Max-Age=3600
```

For more information, see “HTTP host-based load balancing” on page 26.

Use `http-cookie-domain` to restrict the domain that the cookie should apply to. For example, to restrict the cookie to `.server.com`, enter:

```
set http-cookie-domain .server.com
```

Now all generated cookies will have the following form:

```
Set-Cookie: FGTServer=E7D01637C4B08E89A6714213A9D85D9C7E4D8158; Version=1; Domain=.server.com; Max-Age=3600
```

Use `http-cookie-path` to limit the cookies to a particular path. For example, to limit cookies to the path `/sales`, enter:

```
set http-cookie-path /sales
```

Now all generated cookies will have the following form:

```
Set-Cookie: FGTServer=E7D01637C4B08E89A6714213A9D85D9C7E4D8158; Version=1; Domain=.server.com; Path=/sales; Max-Age=3600
```

Use `http-cookie-age` to change how long the browser caches the cookie. You can enter an age in minutes or set the age to 0 to make the browser keep the cookie indefinitely:

```
set http-cookie-age 0
```

Now all generated cookies will have the following form:

```
Set-Cookie: FGTServer=E7D01637C4B08E89A6714213A9D85D9C7E4D8158; Version=1; Domain=.server.com; Path=/sales
```

Use `http-cookie-generation` to invalidate all cookies that have already been generated. The exact value of the generation is not important, only that it is different from any generation that has already been used for cookies in this domain. The simplest approach is to increment the generation by one each time invalidation is required. Since the default is 0, enter the following to invalidate all existing cookies:

```
set http-cookie-generation 1
```

Use `http-cookie-share {disable | same-ip}` to control the sharing of cookies across virtual servers in the same virtual domain. The default setting `same-ip` means that any `FGTServer` cookie generated by one virtual server can be used by another virtual server in the same virtual domain. For example, if you have an application that starts on HTTP and then changes to HTTPS and you want to make sure that the same server is used for the HTTP and HTTPS traffic then you can create two virtual servers, one for port 80 (for HTTP) and one for port 443 (for HTTPS). As long as you add the same real servers to both of these virtual servers (and as long as both virtual servers have the same number of real servers with the same IP addresses), then cookies generated by accessing the HTTP server are reused when the application changes to the HTTPS server.

If for any reason you do not want this sharing to occur then select `disable` to make sure that a cookie generated for a virtual server cannot be used by other virtual servers.

Use `https-cookie-secure` to enable or disable using secure cookies. Secure cookies are disabled by default because secure cookies can interfere with cookie sharing across HTTP and HTTPS virtual servers. If enabled, then the `Secure` tag is added to the cookie inserted by the FortiGate unit:

```
Set-Cookie: FGTServer=E7D01637C4B08E89A6714213A9D85D9C7E4D8158; Version=1; Max-Age=3600; Secure
```
HTTP host-based load balancing

When configuring HTTP or HTTPS load balancing, you can select HTTP host load balancing to load balances HTTP host connections across multiple real servers using the host’s HTTP header to guide the connection to the correct real server. HTTP 1.1 includes the concept of a virtual server which allows an HTTP or HTTPS server with a single external IP address to serve requests for multiple DNS domains by using the mandatory `Host:` header in an HTTP request to indicate which DNS domain the request is destined for.

FortiOS can load-balance HTTP and HTTPS connections among multiple real servers using the `Host:` header to guide the connection to the correct real server. The host load balancing method allows a real server to specify a `http-host` attribute which is the domain name of the traffic for that real server. Each real server can only specify a single domain name. The same domain name can appear in more than one real server but only the first one that is up will be used, any others are purely for redundancy. If the Host: header contains a domain that does not match any `http-host` entry then the connection will be dropped. A real server with no `http-host` can be matched by any Host: domain.

For example, consider a FortiGate unit that is load-balancing traffic to three real servers. Traffic for `www.example1.com` should go to 192.168.2.1, traffic for `www.example2.com` should go to 192.168.2.2 and traffic to any other domain should go to 192.168.2.3. To enable this configuration, you would add a virtual server and set the load balance method to HTTP host. Then you would add three real servers and set the HTTP host of the real server with IP address 192.168.2.1 to `www.example1.com`, the HTTP host of the real server with IP address 192.168.2.2 to `www.example2.com` and you would not specify an HTTP host for the third real server.

The configuration of a virtual IP to achieve this result would be:

```bash
config firewall vip
edit "http-host-ldb"
set type server-load-balance
set extip 172.16.67.195
set extintf "lan"
set server-type http
set ldb-method http-host
set extport 80
config realservers
edit 1
  set http-host "www.example1.com"
  set ip 192.168.2.1
  set port 80
next
edit 2
  set http-host "www.example2.com"
  set ip 192.168.2.2
  set port 80
next
edit 3
  set ip 192.168.2.3
  set port 80
next
end
end
```
Host load balancing and HTTP cookie persistence

In an HTTP host-based load balancing configuration with HTTP cookie persistence enabled you can optionally configure cookie persistence to use the domain set in the host header as the cookie domain. You can do this by enabling the `http-cookie-domain-from-host` option, for example:

```plaintext
config firewall vip
edit "http-host-ldb"
    set type server-load-balance
    set extip 172.16.67.195
    set extintf "lan"
    set server-type http
    set ldb-method http-host
    set extport 80
    set persistence http-cookie
    set http-cookie-domain-from-host enable
config realservers
    edit 1
        set http-host "www.example1.com"
        set ip 192.168.2.1
        set port 80
    next
    edit 2
        set http-host "www.example2.com"
        set ip 192.168.2.2
        set port 80
    next
    edit 3
        set ip 192.168.2.3
        set port 80
    next
end
```

SSL/TLS load balancing

In a firewall load balancing virtual server configuration, you can select SSL to load balance only SSL and TLS sessions. The virtual server will load balance SSL and TLS sessions received at the virtual server interface with destination IP address that matches the configured virtual server IP and destination port number that matches the configured virtual server port. Change this port to match the destination port of the sessions to be load balanced.

For SSL load balancing you can also set persistence to SSL session ID. Persistence is achieved by the FortiGate unit sending all sessions with the same SSL session ID to the same real server. When you configure persistence, the FortiGate unit load balances a new session to a real server according to the Load Balance Method. If the session has an SSL session ID, the FortiGate unit sends all subsequent sessions with the same SSL session ID to the same real server.
SSL offloading

Use SSL offloading to accelerate clients’ SSL or HTTPS connections to real servers by using the FortiGate unit to perform SSL operations (offloading them from the real servers using the FortiGate unit’s SSL acceleration hardware). FortiGate units can offload SSL 3.0 and TLS 1.0. SSL offloading is available on FortiGate units that support SSL acceleration.

To configure SSL offloading from the web-based manager go to Firewall Objects > Load Balance > Virtual Server. Add a virtual server and set the type to HTTPS or SSL and select the SSL offloading type (Client <-> FortiGate or Client <-> FortiGate <->Server).

Select Client <-> FortiGate to apply hardware accelerated SSL processing only to the part of the connection between the client and the FortiGate unit. This mode is called half mode SSL offloading. The segment between the FortiGate unit and the server will use clear text communications. This results in best performance, but cannot be used in failover configurations where the failover path does not have an SSL accelerator.

Select Client <-> FortiGate <->Server to apply hardware accelerated SSL processing to both parts of the connection: the segment between client and the FortiGate unit, and the segment between the FortiGate unit and the server. This mode is called full mode SSL offloading. The segment between the FortiGate unit and the server will use encrypted communications, but the handshakes will be abbreviated. This results in performance which is less than the other option, but still improved over communications without SSL acceleration, and can be used in failover configurations where the failover path does not have an SSL accelerator. If the server is already configured to use SSL, this also enables SSL acceleration without requiring changes to the server’s configuration.
Configuring SSL offloading also requires selecting a certificate to use for the SSL offloading sessions. The certificate key size must be 1024 or 2048 bits. 4096-bit keys are not supported.
The following CLI command shows an example half mode HTTPS SSL offloading configuration. In the example the `ssl-mode` option sets the SSL offload mode to `half` (which is the default mode).

```plaintext
config firewall vip
edit Vserver-ssl-offload
  set type server-load-balance
  set server-type https
  set ldb-method round-robin
  set extip 172.20.120.30
  set extintf wan1
  set extport 443
  set persistence ssl-session-id
  set ssl-mode half
  set ssl-certificate my-cert
  set monitor t cp-mon-1
config realservers
  edit 1
    set ip 10.31.101.30
    set port 443
  next
  edit 2
    set ip 10.31.101.40
    set port 443
end
end
```

Additional SSL load balancing options

The following SSL load balancing and SSL offloading options are only available from the CLI:

- `ssl-client-session-state-max <sessionstates_int>`
 Enter the maximum number of SSL session states to keep for the segment of the SSL connection between the client and the FortiGate unit.

- `ssl-client-session-state-timeout <timeout_int>`
 Enter the number of minutes to keep the SSL session states for the segment of the SSL connection between the client and the FortiGate unit.

- `ssl-client-session-state-type {both | client | disable | time}`
 Select which method the FortiGate unit should use when deciding to expire SSL sessions for the segment of the SSL connection between the client and the FortiGate unit.
 - **both:** Select to expire SSL session states when either `ssl-client-session-state-max` or `ssl-client-session-state-timeout` is exceeded, regardless of which occurs first.
 - **count:** Select to expire SSL session states when `ssl-client-session-state-max` is exceeded.
 - **disable:** Select to keep no SSL session states.
 - **time:** Select to expire SSL session states when `ssl-client-session-state-timeout` is exceeded.

- `ssl-dh-bits <bits_int>`
Enter the number of bits of the prime number used in the Diffie-Hellman exchange for RSA encryption of the SSL connection. Larger prime numbers are associated with greater cryptographic strength.

```plaintext
ssl-http-location-conversion {enable | disable}
```

Select to replace http with https in the reply’s Location HTTP header field. For example, in the reply, Location: http://example.com/ would be converted to Location: https://example.com/

```plaintext
ssl-http-match-host {enable | disable}
```

Select to apply Location conversion to the reply’s HTTP header only if the host name portion of Location matches the request’s Host field, or, if the Host field does not exist, the host name portion of the request’s URI. If disabled, conversion occurs regardless of whether the host names in the request and the reply match.

For example, if host matching is enabled, and a request contains Host: example.com and the reply contains Location: http://example.cc/, the Location field does not match the host of the original request and the reply’s Location field remains unchanged. If the reply contains Location: http://example.com/, however, then the FortiGate unit detects the matching host name and converts the reply field to Location: https://example.com/.

This option appears only if ssl-http-location-conversion is enable.

```plaintext
ssl-max-version {ssl-3.0 | tls-1.0}
```

Enter the maximum version of SSL/TLS to accept in negotiation.

```plaintext
ssl-min-version {ssl-3.0 | tls-1.0}
```

Enter the minimum version of SSL/TLS to accept in negotiation.

```plaintext
ssl-send-empty-frags {enable | disable}
```

Select to precede the record with empty fragments to thwart attacks on CBC IV. You might disable this option if SSL acceleration will be used with an old or buggy SSL implementation which cannot properly handle empty fragments.

```plaintext
ssl-server-session-state-max <sessionstates_int>
```

Enter the maximum number of SSL session states to keep for the segment of the SSL connection between the server and the FortiGate unit.

```plaintext
ssl-server-session-state-timeout <timeout_int>
```

Enter the number of minutes to keep the SSL session states for the segment of the SSL connection between the server and the FortiGate unit. This option appears only if ssl-mode is full.

```plaintext
ssl-server-session-state-type {both | count | disable | time}
```

Select which method the FortiGate unit should use when deciding to expire SSL sessions for the segment of the SSL connection between the server and the FortiGate unit. This option appears only if ssl-mode is full.

- **both**: Select to expire SSL session states when either ssl-server-session-state-max or ssl-server-session-state-timeout is exceeded, regardless of which occurs first.
- **count**: Select to expire SSL session states when ssl-server-session-state-max is exceeded.
- **disable**: Select to keep no SSL session states.
- **time**: Select to expire SSL session states when ssl-server-session-state-timeout is exceeded.
SSL offloading support or Internet Explorer 6

In some cases the Internet Explorer 6 web browser may be able to access real servers. To resolve this issue, disable the `ssl-send-empty-frags` option:

```plaintext
config firewall vip
edit vip_name
    set ssl-send-empty-frags disable
end
```

You can disable this option if SSL acceleration will be used with an old or buggy SSL implementation that cannot properly handle empty fragments.

Disabling SSL/TLS re-negotiation

The vulnerability CVE-2009-3555 affects all SSL/TLS servers that support re-negotiation. FortiOS when configured for SSL/TLS offloading is operating as a SSL/TLS server. The IETF is working on a TLS protocol change that will fix the problem identified by CVE-2009-3555 while still supporting re-negotiation. Until that protocol change is available, you can use the `ssl-client-renegotiation` option to disable support for SSL/TLS re-negotiation. The default value of this option is `allow`, which allows an SSL client to renegotiate. You can change the setting to `deny` to abort any attempts by an SSL client to renegotiate. If you select `deny` as soon as a ClientHello message indicating a re-negotiation is received from the client FortiOS terminates the TCP connection.

Since SSL offloading does not support requesting client certificates the only circumstance in which a re-negotiation is required is when more than 2^{32} bytes of data are exchanged over a single handshake. If you are sure that this volume of traffic will not occur then you can disable re-negotiation and avoid any possibility of the attack described in CVE-2009-3555.

The re-negotiation behavior can be tested using OpenSSL. The OpenSSL `s_client` application has the feature that the user can request that it do renegotiation by typing “R”. For example, the following shows a successful re-negotiation against a FortiGate unit configured with a VIP for 192.168.2.100:443:

```plaintext
$ openssl s_client -connect 192.168.2.100:443
CONNECTED(00000003)
  depth=1 /C=US/ST=California/L=Sunnyvale/O=Fortinet/OU=Certificate Authority/CN=support/emailAddress=support@fortinet.com
verify error:num=19:self signed certificate in certificate chain
verify return:0
---
  Certificate chain
  0
s:/C=US/ST=California/L=Sunnyvale/O=Fortinet/OU=Fortigate/CN=FW80CM3909604325/emailAddress=support@fortinet.com
  i:/C=US/ST=California/L=Sunnyvale/O=Fortinet/OU=Certificate Authority/CN=support/emailAddress=support@fortinet.com
1 s:/C=US/ST=California/L=Sunnyvale/O=Fortinet/OU=Certificate Authority/CN=support/emailAddress=support@fortinet.com
  i:/C=US/ST=California/L=Sunnyvale/O=Fortinet/OU=Certificate Authority/CN=support/emailAddress=support@fortinet.com
---
  Server certificate
-----BEGIN CERTIFICATE-----
```

---certificate not shown---

-----END CERTIFICATE-----
The following is the same test, but this time with the VIP configuration changed to
ssl-client-renegotation deny:
$ openssl s_client -connect 192.168.2.100:443
CONNECTED(00000003)
depth=1 /C=US/ST=California/L=Sunnyvale/O=Fortinet/OU=Certificate Authority/CN=support/emailAddress=support@fortinet.com
verify error:num=19:self signed certificate in certificate chain
verify return:0

Certificate chain
0

s:/C=US/ST=California/L=Sunnyvale/O=Fortinet/OU=Fortigate/CN=FW80CM3909604325/emailAddress=support@fortinet.com
i:/C=US/ST=California/L=Sunnyvale/O=Fortinet/OU=Certificate Authority/CN=support/emailAddress=support@fortinet.com
l s:/C=US/ST=California/L=Sunnyvale/O=Fortinet/OU=Certificate Authority/CN=support/emailAddress=support@fortinet.com
i:/C=US/ST=California/L=Sunnyvale/O=Fortinet/OU=Certificate Authority/CN=support/emailAddress=support@fortinet.com

Server certificate
-----BEGIN CERTIFICATE-----
---certificate not shown---
-----END CERTIFICATE-----

subject=/C=US/ST=California/L=Sunnyvale/O=Fortinet/OU=Fortigate/CN=FW80CM3909604325/emailAddress=support@fortinet.com
issuer=/C=US/ST=California/L=Sunnyvale/O=Fortinet/OU=Certificate Authority/CN=support/emailAddress=support@fortinet.com

No client certificate CA names sent

SSL handshake has read 2370 bytes and written 316 bytes

New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA
Server public key is 1024 bit
Compression: NONE
Expansion: NONE
SSL-Session:
 Protocol : TLSv1
 Cipher : DHE-RSA-AES256-SHA
 Session-ID:
 8253331D266DE38E4D8A04AFCA9CBDE5B1134932CE1718EED6469C1FBC7474
 Session-ID-ctx:
 Master-Key:
 ED05A3EF168AF2D06A486362FE91F1D6CAA55CEFC38A3C36FB8BD74236BF2657D4701B6C1456CEB5BB5EEFAA7619EF12D
 Key-Arg : None
 Start Time: 1264452957
 Timeout : 300 (sec)
 Verify return code: 19 (self signed certificate in certificate chain)

GET /main.c HTTP/1.0
R
RENEGOTIATING
19916:error:1409E0E5:SSL routines:SSL3_WRITE_BYTES:ssl handshake failure:s3_pkt.c:530:

Use the following command to check the SSL stats to see that the renegotiations blocked counter is now 1:

```
firewall vip virtual-server stats ssl
```

```
client
    connections total 0 active 0 max 0
    handshakes total 4 active 0 max 0 completed 4 abbreviated 0
    session states total 4 active 4 max 4
    cipher-suite failures 0
    embryonics total 0 active 0 max 0 terminated 0
    renegotiations blocked 1
server
    connections total 0 active 0 max 0
    handshakes total 3 active 0 max 0 completed 2 abbreviated 1
    session states total 1 active 1 max 1
    cipher-suite failures 0
    internal error 0
    bad handshake length 0
    bad change cipher spec length 0
    pubkey too big 0
    persistence
        find 0 found 0 clash 0 addr 0 error 0
```

If the virtual server debug log is examined (diag debug appl vs -1) then at the point the re-negotiation is blocked there is a log:

```
vs ssl 12 handshake recv ClientHello
vs ssl 12 handshake recv 1
    (0100005403014b5e056c7f573a563bebe0258c3254bbaff7046a461164f34f94f4f3d019c4180002600390038003500160013000a00330032002f0005000400150012000900140011000800060003020100000400230000)
vs ssl 12 client renegotiation attempted rejected, abort
vs ssl 12 closing 0 up
vs src 12 close 0 in
vs src 12 error closing
vs dst 14 error closing
vs dst 14 closed
vs ssl 14 close
vs sock 14 free
vs src 12 closed
vs ssl 12 close
vs sock 12 free
```

IP, TCP, and UDP load balancing

You can load balance all IP, TCP or UDP sessions accepted by the security policy that includes a load balancing virtual server with the type set to IP, TCP, or UDP. Traffic with destination IP and port that matches the virtual server IP and port is load balanced. For these protocol-level load balancing virtual servers you can select a load balance method and add real servers and health checking. However, you can’t configure persistence, HTTP multiplexing and SSL offloading.
Load balancing configuration examples

This chapter includes the following examples:

- Example: HTTP load balancing to three real web servers
- Example: Basic IP load balancing configuration
- Example: Adding a server load balance port forwarding virtual IP
- Example: Weighted load balancing configuration
- Example: HTTP and HTTPS persistence configuration

Example: HTTP load balancing to three real web servers

In this example, the virtual web server IP address 192.168.37.4 on the Internet, is mapped to three real web servers connected to the FortiGate unit dmz1 interface. The real servers have IP addresses 10.10.123.42, 10.10.123.43, and 10.10.123.44. The virtual server uses the *First Alive* load balancing method. The configuration also includes an HTTP health check monitor that includes a URL used by the FortiGate unit for get requests to monitor the health of the real servers.

Connections to the virtual web server at IP address 192.168.37.4 from the Internet are translated and load balanced to the real servers by the FortiGate unit. First alive load balancing directs all sessions to the first real server. The computers on the Internet are unaware of this translation and load balancing and see a single virtual server at IP address 192.168.37.4 rather than the three real servers behind the FortiGate unit.

Figure 4: Virtual server configuration example
Web-based manager configuration

Use the following procedures to configure this load balancing setup from the web-based manager.

To add an HTTP health check monitor

In this example, the HTTP health check monitor includes the URL “/index.html” and the Matched Phrase “Fortinet products”.

1. Go to Firewall Objects > Load Balance > Health Check.
2. Select Create New.
3. Add an HTTP health check monitor that sends get requests to http://<real_server_IP_address>/index.html and searches the returned web page for the phrase “Fortinet products”.

<table>
<thead>
<tr>
<th>Name</th>
<th>HTTP_health_chk_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>HTTP</td>
</tr>
<tr>
<td>Port</td>
<td>80</td>
</tr>
<tr>
<td>URL</td>
<td>/index.html</td>
</tr>
<tr>
<td>Matched Content</td>
<td>Fortinet products</td>
</tr>
<tr>
<td>Interval</td>
<td>10 seconds</td>
</tr>
<tr>
<td>Timeout</td>
<td>2 seconds</td>
</tr>
<tr>
<td>Retry</td>
<td>3</td>
</tr>
</tbody>
</table>

4. Select OK.

To add the HTTP virtual server

1. Go to Firewall Objects > Load Balance > Virtual Server.
2. Select Create New.
3. Add an HTTP virtual server that allows users on the Internet to connect to the real servers on the internal network. In this example, the FortiGate wan1 interface is connected to the Internet.

<table>
<thead>
<tr>
<th>Name</th>
<th>Load_Bal_VS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>HTTP</td>
</tr>
<tr>
<td>Interface</td>
<td>wan1</td>
</tr>
</tbody>
</table>
To add the real servers and associate them with the virtual server

1. Go to **Firewall Objects > Load Balance > Real Server**.
2. Select **Create New**.

<table>
<thead>
<tr>
<th>Virtual Server IP</th>
<th>192.168.37.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>The public IP address of the web server.</td>
<td></td>
</tr>
<tr>
<td>The virtual server IP address is usually a static IP address obtained from your ISP for your web server. This address must be a unique IP address that is not used by another host and cannot be the same as the IP address of the external interface the virtual IP will be using. However, the external IP address must be routed to the selected interface. The virtual IP address and the external IP address can be on different subnets. When you add the virtual IP, the external interface responds to ARP requests for the external IP address.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Virtual Server Port</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Balance Method</td>
<td>First Alive</td>
</tr>
<tr>
<td>Persistence</td>
<td>HTTP cookie</td>
</tr>
<tr>
<td>HTTP Multiplexing</td>
<td>Select.</td>
</tr>
<tr>
<td>The FortiGate unit multiplexes multiple client into a few connections between the FortiGate unit and each real HTTP server. This can improve performance by reducing server overhead associated with establishing multiple connections.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preserve Client IP</th>
<th>Select</th>
</tr>
</thead>
<tbody>
<tr>
<td>The FortiGate unit preserves the IP address of the client in the X-Forwarded-For HTTP header.</td>
<td></td>
</tr>
</tbody>
</table>

| Health Check | Move the HTTP_health_chk_1 health check monitor to the **Selected** list. |

4. Select **OK**.

To add the real servers and associate them with the virtual server
3 Configure three real servers that include the virtual server Load_Bal_VS1. Each real server must include the IP address of a real server on the internal network.

Configuration for the first real server.

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>Load_Bal_VS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.10.10.42</td>
</tr>
<tr>
<td>Port</td>
<td>80</td>
</tr>
<tr>
<td>Weight</td>
<td>Cannot be configured because the virtual server does not include weighted load balancing.</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

Setting *Maximum Connections* to 0 means the FortiGate unit does not limit the number of connections to the real server. Since the virtual server uses *First Alive* load balancing you may want to limit the number of connections to each real server to limit the traffic received by each server. In this example, the *Maximum Connections* is initially set to 0 but can be adjusted later if the real servers are getting too much traffic.

Configuration for the second real server.

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>Load_Bal_VS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.10.10.43</td>
</tr>
<tr>
<td>Port</td>
<td>80</td>
</tr>
<tr>
<td>Weight</td>
<td>Cannot be configured because the virtual server does not include weighted load balancing.</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

Configuration for the third real server.

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>Load_Bal_VS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.10.10.44</td>
</tr>
<tr>
<td>Port</td>
<td>80</td>
</tr>
</tbody>
</table>
To add the virtual server to a security policy

Add a wan1 to dmz1 security policy that uses the virtual server so that when users on the Internet attempt to connect to the web server’s IP address, packets pass through the FortiGate unit from the wan1 interface to the dmz1 interface. The virtual IP translates the destination address of these packets from the virtual server IP address to the real server IP addresses.

1. Go to Policy > Policy > Policy.
2. Select Create New.
3. Configure the security policy:
 - Policy Type: Firewall
 - Policy Subtype: Address
 - Incoming Interface: wan1
 - Source Address: all (or a more specific address)
 - Outgoing Interface: dmz1
 - Destination Address: Load_Bal_VS1
 - Schedule: always
 - Service: HTTP
 - Action: ACCEPT
 - Log Allowed Traffic: Select to log virtual server traffic
 - Enable NAT: Select this option and select Use Destination Interface Address.

4. Select other security policy options as required.
5. Select OK.

CLI configuration

Use the following procedure to configure this load balancing setup from the CLI.
To configure HTTP load balancing

1. Use the following command to add an HTTP health check monitor that sends get requests to http://<real_server_IP_address>/index.html and searches the returned web page for the phrase “Fortinet products”.

```
config firewall ldb-monitor
edit HTTP_health_chk_1
    set type http
    set port 80
    set http-get /index.html
    set http-match "Fortinet products"
    set interval 10
    set timeout 2
    set retry 3
end
```

2. Use the following command to add an HTTP virtual server that allows users on the Internet to connect to the real servers on the internal network. In this example, the FortiGate wan1 interface is connected to the Internet.

```
config firewall vip
edit Load-Bal_VS1
    set type server-load-balance
    set server-type http
    set ldb-method first-alive
    set http-multiplex enable
    set http-ip-header enable
    set extip 192.168.37.4
    set extintf wan1
    set extport 80
    set persistence http-cookie
    set monitor HTTP_health_chk_1
config realservers
edit 1
    set ip 10.10.10.42
    set port 80
next
edit 2
    set ip 10.10.10.43
    set port 80
next
edit 3
    set ip 10.10.10.44
    set port 80
end
end
```
3 Use the following command to add a security policy that includes the load balance virtual server as the destination address.

```
config firewall policy
edit 0
set srcintf wan1
set srcaddr all
set dstintf dmz1
set dstaddr Load-Bal_VS1
set action accept
set schedule always
set service ALL
set nat enable
end
```

Configure other security policy settings as required.

Example: Basic IP load balancing configuration

This example shows how to add a server load balancing virtual IP that load balances all traffic among 3 real servers. In the example the Internet is connected to port2 and the virtual IP address of the virtual server is 192.168.20.20. The load balancing method is weighted. The IP addresses of the real servers are 10.10.10.1, 10.10.10.2, and 10.10.10.3. The weights for the real servers are 1, 2, and 3. The default weight is 1 and does not have to be changed for the first real server.

```
config firewall vip
edit All_Load_Balance
set type server-load-balance
set server-type ip
set extintf port2
set extip 192.168.20.20
set ldb-method weighted
config realservers
edit 1
set ip 10.10.10.1
next
edit 2
set ip 10.10.10.2
set weight 2
next
edit 3
set ip 10.10.10.3
set weight 3
end
end
```

Example: Adding a server load balance port forwarding virtual IP

This example is the same as the example described in “Example: HTTP load balancing to three real web servers” on page 36 except that each real server accepts HTTP connections on a
different port number. The first real server accepts connections on port 8080, the second on port 8081, and the third on 8082.

Figure 5: Server load balance virtual IP port forwarding

To complete this configuration, all of the steps would be the same as in "Example: HTTP load balancing to three real web servers" on page 36 except for configuring the real servers.

To add the real servers and associate them with the virtual server

Use the following steps to configure the FortiGate unit to port forward HTTP packets to the three real servers on ports 8080, 8081, and 8082.

1. Go to **Firewall Objects > Load Balance > Real Server**.
2. Select **Create New**.
3 Configure three real servers that include the virtual server Load_Bal_VS1. Each real server must include the IP address of a real server on the internal network and have a different port number.

Configuration for the first real server.

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>Load_Bal_VS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>10.10.10.42</td>
</tr>
<tr>
<td>Port</td>
<td>8080</td>
</tr>
<tr>
<td>Weight</td>
<td>Cannot be configured because the virtual server does not include weighted load balancing.</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

Configuration for the second real server.

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>Load_Bal_VS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>10.10.10.43</td>
</tr>
<tr>
<td>Port</td>
<td>8081</td>
</tr>
<tr>
<td>Weight</td>
<td>Cannot be configured because the virtual server does not include weighted load balancing.</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

Configuration for the third real server.

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>Load_Bal_VS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>10.10.10.44</td>
</tr>
<tr>
<td>Port</td>
<td>8082</td>
</tr>
<tr>
<td>Weight</td>
<td>Cannot be configured because the virtual server does not include weighted load balancing.</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

Example: Weighted load balancing configuration

This example shows how to using firewall load balancing to load balances all traffic among 3 real servers. In the example the Internet is connected to port2 and the virtual IP address of the virtual server is 192.168.20.20. The load balancing method is weighted. The IP addresses of the real servers are 10.10.10.1, 10.10.10.2, and 10.10.10.3. The weights for the real servers are 1, 2, and 3.

This configuration does not include an health check monitor.

Web-based manager configuration

Use the following procedures to configure this load balancing setup from the web-based manager.
To add the HTTP virtual server
1. Go to Firewall Objects > Load Balance > Virtual Server.
2. Select Create New.
3. Add an IP virtual server that allows users on the Internet to connect to the real servers on the internal network. In this example, the FortiGate port2 interface is connected to the Internet.

<table>
<thead>
<tr>
<th>Name</th>
<th>HTTP_weighted_LB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>IP</td>
</tr>
<tr>
<td>Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Virtual Server IP</td>
<td>192.168.20.20</td>
</tr>
<tr>
<td>Load Balance Method</td>
<td>Weighted</td>
</tr>
</tbody>
</table>

All other virtual server settings are not required or cannot be changed.
4. Select OK.

To add the real servers and associate them with the virtual server
1. Go to Firewall Objects > Load Balance > Real Server.
2. Select Create New.
3 Configure three real servers that include the virtual server All_Load_Balance. Because the Load Balancing Method is Weighted, each real server includes a weight. Servers with a greater weight receive a greater proportion of forwarded connections.

Configuration for the first real server.

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>HTTP_weightedLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.10.10.1</td>
</tr>
<tr>
<td>Port</td>
<td>Cannot be configured because the virtual server is an IP server.</td>
</tr>
<tr>
<td>Weight</td>
<td>1</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

Setting Maximum Connections to 0 means the FortiGate unit does not limit the number of connections to the real server. Since the virtual server uses First Alive load balancing you may want to limit the number of connections to each real server to limit the traffic received by each server. In this example, the Maximum Connections is initially set to 0 but can be adjusted later if the real servers are getting too much traffic.

Configuration for the second real server.

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>HTTP_weightedLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.10.10.2</td>
</tr>
<tr>
<td>Port</td>
<td>Cannot be configured because the virtual server is an IP server.</td>
</tr>
<tr>
<td>Weight</td>
<td>2</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

Setting Maximum Connections to 0 means the FortiGate unit does not limit the number of connections to the real server. Since the virtual server uses First Alive load balancing you may want to limit the number of connections to each real server to limit the traffic received by each server. In this example, the Maximum Connections is initially set to 0 but can be adjusted later if the real servers are getting too much traffic.

Configuration for the third real server.

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>HTTP_weightedLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.10.10.3</td>
</tr>
<tr>
<td>Port</td>
<td>Cannot be configured because the virtual server is an IP server.</td>
</tr>
</tbody>
</table>
To add the virtual server to a security policy

Add a prot2 to port1 security policy that uses the virtual server so that when users on the Internet attempt to connect to the web server’s IP address, packets pass through the FortiGate unit from the wan1 interface to the dmz1 interface. The virtual IP translates the destination address of these packets from the virtual server IP address to the real server IP addresses.

1. Go to Policy > Policy > Policy.
2. Select Create New.
3. Configure the security policy:

<table>
<thead>
<tr>
<th>Policy Type</th>
<th>Firewall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy Subtype</td>
<td>Address</td>
</tr>
<tr>
<td>Incoming Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Source Address</td>
<td>all (or a more specific address)</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>port1</td>
</tr>
<tr>
<td>Destination Address</td>
<td>HTTP_weighted LB</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>Enable NAT</td>
<td>Select this option and select Use Destination Interface Address.</td>
</tr>
</tbody>
</table>

4. Select other security policy options as required.
5. Select OK.

CLI configuration

Load balancing is configured from the CLI using the `config firewall vip` command and by setting `type` to `server-load-balance`. The default weight is 1 and does not have to be changed for the first real server.
Use the following command to add the virtual server and the three weighted real servers.

```plaintext
config firewall vip
edit HTTP_weighted_LB
    set type server-load-balance
    set server-type ip
    set extintf port2
    set extip 192.168.20.20
    set ldb-method weighted
    config realservers
        edit 1
            set ip 10.10.10.1
        next
        edit 2
            set ip 10.10.10.2
            set weight 2
        next
        edit 3
            set ip 10.10.10.3
            set weight 3
    end
end
```

Example: HTTP and HTTPS persistence configuration

This example shows how to add a virtual server named `Http_Load_Balance` that load balances HTTP traffic using port 80 and a second virtual server named `Https_Load_Balance` that load balances HTTPS traffic using port 443. The Internet is connected to port2 and the virtual IP address of the virtual server is 192.168.20.20. Both server load balancing virtual IPs load balance sessions to the same three real servers with IP addresses 10.10.10.2, 10.10.10.2, and 10.10.10.3. The real servers provide HTTP and HTTPS services.

For both virtual servers, persistence is set to `HTTP Cookie` to enable HTTP cookie persistence.

To add the HTTP and HTTPS virtual servers

1. Go to *Firewall Objects > Load Balance > Virtual Server.*
2. Add the HTTP virtual server that includes HTTP Cookie persistence.

<table>
<thead>
<tr>
<th>Name</th>
<th>HTTP_Load_Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>HTTP</td>
</tr>
<tr>
<td>Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Virtual Server IP</td>
<td>192.168.20.20</td>
</tr>
<tr>
<td>Virtual Server Port</td>
<td>80</td>
</tr>
<tr>
<td>Load Balance Method</td>
<td>Static</td>
</tr>
<tr>
<td>Persistence</td>
<td>HTTP cookie</td>
</tr>
</tbody>
</table>

In this example the virtual server uses port 8080 for HTTP sessions instead of port 80.
3 Select OK.
4 Select Create New.
5 Add the HTTPs virtual server that also includes HTTP Cookie persistence.

<table>
<thead>
<tr>
<th>Name</th>
<th>HTTPS_Load_Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>HTTPS</td>
</tr>
<tr>
<td>Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Virtual Server IP</td>
<td>192.168.20.20</td>
</tr>
<tr>
<td>Virtual Server Port</td>
<td>443</td>
</tr>
<tr>
<td>Load Balance Method</td>
<td>Static</td>
</tr>
<tr>
<td>Persistence</td>
<td>HTTP cookie</td>
</tr>
</tbody>
</table>

6 Select OK.

To add the real servers and associate them with the virtual servers

1 Go to Firewall Objects > Load Balance > Real Server.
2 Select Create New.
3 Configure three real servers for HTTP that include the virtual server HTTP_Load_Balance.

Configuration for the first HTTP real server.

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>HTTP_Load_Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.10.10.1</td>
</tr>
<tr>
<td>Port</td>
<td>80</td>
</tr>
<tr>
<td>Weight</td>
<td>Cannot be configured because the virtual server does not include weighted load balancing.</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

Configuration for the second HTTP real server.

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>HTTP_Load_Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.10.10.2</td>
</tr>
<tr>
<td>Port</td>
<td>80</td>
</tr>
<tr>
<td>Weight</td>
<td>Cannot be configured because the virtual server does not include weighted load balancing.</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

Configuration for the third HTTP real server.

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>HTTP_Load_Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.10.10.3</td>
</tr>
</tbody>
</table>
4 Configure three real servers for HTTPS that include the virtual server HTTPS_Load_Balance.

<table>
<thead>
<tr>
<th>Port</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>Cannot be configured because the virtual server does not include weighted load balancing.</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

Configuration for the first HTTPS real server.

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>HTTP_Load_Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.10.10.1</td>
</tr>
<tr>
<td>Port</td>
<td>443</td>
</tr>
<tr>
<td>Weight</td>
<td>Cannot be configured because the virtual server does not include weighted load balancing.</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

Configuration for the second HTTPS real server.

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>HTTP_Load_Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.10.10.2</td>
</tr>
<tr>
<td>Port</td>
<td>443</td>
</tr>
<tr>
<td>Weight</td>
<td>Cannot be configured because the virtual server does not include weighted load balancing.</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

Configuration for the third HTTPS real server.

<table>
<thead>
<tr>
<th>Virtual Server</th>
<th>HTTPS_Load_Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.10.10.3</td>
</tr>
<tr>
<td>Port</td>
<td>443</td>
</tr>
<tr>
<td>Weight</td>
<td>Cannot be configured because the virtual server does not include weighted load balancing.</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>0</td>
</tr>
</tbody>
</table>

To add the virtual servers to security policies

Add a port2 to port1 security policy that uses the virtual server so that when users on the Internet attempt to connect to the web server’s IP address, packets pass through the FortiGate unit from the wan1 interface to the dmz1 interface. The virtual IP translates the destination address of these packets from the virtual server IP address to the real server IP addresses.

1. Go to Policy > Policy > Policy.
2. Select Create New.
3 Configure the HTTP security policy:

Policy Type	Firewall
Policy Subtype | Address
Incoming Interface | port2
Source Address | all
Outgoing Interface | port1
Destination Address | HTTP_Load_Balance
Schedule | always
Service | HTTP
Action | ACCEPT
Enable NAT | Select this option and select *Use Destination Interface Address*.

4 Select other security policy options as required.
5 Select OK.
6 Select *Create New*.
7 Configure the HTTP security policy:

Policy Type	Firewall
Policy Subtype | Address
Incoming Interface | port2
Source Address | all
Outgoing Interface | port1
Destination Address | HTTPS_Load_Balance
Schedule | always
Service | HTTPS
Action | ACCEPT
Enable NAT | Select this option and select *Use Destination Interface Address*.

8 Select other security policy options as required.
9 Select OK.

CLI configuration: adding persistence for a specific domain

Load balancing is configured from the CLI using the `config firewall vip` command and by setting `type` to `server-load-balance`.
For the CLI configuration, both virtual servers include setting `http-cookie-domain` to `.example.org` because HTTP cookie persistence is just required for the `example.org` domain.

First, the configuration for the HTTP virtual IP:

```bash
config firewall vip
edit HTTP_Load_Balance
set type server-load-balance
set server-type http
set extport 8080
set extintf port2
set extip 192.168.20.20
set persistence http-cookie
set http-cookie-domain .example.org
config realservers
edit 1
  set ip 10.10.10.1
next
edit 2
  set ip 10.10.10.2
next
edit 3
  set ip 10.10.10.3
end
end
```

Second, the configuration for the HTTPS virtual IP. In this configuration you don’t have to set `extport` to 443 because `extport` is automatically set to 443 when `server-type` is set to `https`.

```bash
config firewall vip
edit HTTPS_Load_Balance
set type server-load-balance
set server-type https
set extport 443
set extintf port2
set extip 192.168.20.20
set persistence http-cookie
set http-cookie-domain .example.org
config realservers
edit 1
  set ip 10.10.10.1
next
edit 2
  set ip 10.10.10.2
next
edit 3
  set ip 10.10.10.3
end
end
```
Index

A
active mode
real server 11
adding, configuring defining
health check monitor 13
adding, configuring or defining
server load balance port forwarding virtual IP 42
server load balance virtual IP 36
ARP 9
proxy ARP 9
arp-reply
load balance virtual server 10

C
Client to FortiGate
SSL offloading 28
Client to FortiGate to Server
SSL offloading 28
cookie
persistence 24
cookie persistence
HTTP host-based load balancing 27

D
diagnose
firewall vip realserver 16
firewall vip virtual-server 16
disabled mode
real server 11

F
firewall vip realserver
diagnose 16
firewall vip virtual-server
diagnose 16
first alive
load balancing 10
full mode
SSL offloading 28

G
get
test vs 16
get test ipldb 15

H
half mode
SSL offloading 28

health check
ping 19
health check monitor
configuring 13
matched content 14
real server 13
health monitor
real server 13
host-based
load balancing 26
HTTP
persistence 23
HTTP cookie
persistence 24
HTTP host
cookie persistence load balancing 27
load balancing 11, 26
HTTPS
persistence 23

I
interface
load balance virtual server 9
proxy ARP 9
IP
load balance virtual server 9
load balancing 35
IP pool
proxy ARP 9

L
least round trip time
load balancing 10
least RTT
load balancing 10
least session
load balancing 11
load balance
first alive 10
health check monitor 13
health check monitoring 13
health monitoring 13
HTTP host 11
least RTT 10
least session 11
round robin 10
source IP hash 10
static 10
virtual server IP 9
weighted 10
load balancing 6
 basic example 18
HTTP host-based 26
 IP 35
monitoring 15
real servers 11
SSL 27
SSL offloading 28
TCP 35
UDP 35

M
 matched content 15
 HTTP health check monitor 14
 maximum connections
 real server 11
mode
 real server 11
monitor
 load balancing 15

P
 persistence 10
 HTTP cookie 24
 HTTP/HTTPS 23
ping
 health check monitor 19
port
 virtual server 10
proxy ARP 9
 FortiGate interface 9
 IP pool 9
 virtual IP 9

R
 real server
 active mode 11
 adding 12
 disabled mode 11
 health check monitoring 13
 health monitoring 13
 load balancing 11
 maximum connections 11
 mode 11
 standby mode 12
 weight 11
round robin
 load balancing 10

S
 server load balance port forwarding virtual IP
 adding 42
 server load balance virtual IP
 adding 36
 source IP hash
 load balancing 10
SSL
 load balancing 27
SSL offloading
 certificates.certificate
 SSL offloading 29
 Client to FortiGate 28
 Client to FortiGate to Server 28
 full mode 28
 half mode 28
 load balancing 28
standby mode
 real server 12
static
 load balancing 10

T
 TCP
 load balancing 35
 test vs
 get 16

U
 UDP
 load balancing 35

V
 virtual IP 9
 virtual server
 arp-reply 10
 interface 9
 IP 9
 port 10

W
 weight
 real server 11
 weighted
 load balancing 10