Introduction 15
Before you begin .. 15
How this guide is organized 15

Using the web-based manager 17
Web-based manager overview 17
Web-based manager menus and pages 17
 Using information tables 18
 Using page navigation 18
 Adding filters to web-based manager lists .. 18
 Using column settings 19
Using online help 19
 Online help search tips 20
 Using the keyboard to navigate in the online help .. 20
Entering text strings 21
 Entering text strings (names) 21
 Entering numeric values 22
 Selecting options from a list 22
 Enabling or disabling options 22
Dashboard .. 22
 Adding dashboards 23
 Adding widgets to a dashboard 23
System Information widget 23
 Changing the FortiGate unit’s host name 25
 Changing the operation mode 25
 Configuring system time 26
 Changing the firmware 27
 Backing up the configuration 28
 Formatting USB 28
Remote FortiManager backup and restore options .. 29
Remote FortiGuard backup and restore options .. 29
Restoring your firmware configuration 29
Viewing online administrators 30
Changing the currently logged in administrator’s password 30
License Information widget 30
 Manually updating FortiGuard definitions 31
FortiGate unit Operation widget 32
System Resources widget 32
Alert Message Console widget 32
Using grep to filter get and show command output .. 55
Language support and regular expressions .. 55
Screen paging ... 58
Baud rate .. 58
Editing the configuration file on an external host ... 58
Using Perl regular expressions .. 59
 Differences between regular expression and wildcard pattern matching 59
 Word boundary ... 59
 Case sensitivity .. 59

Basic setup ... 61
Connecting to the FortiGate unit .. 61
 Connecting to the web-based manager ... 61
 Connecting to the CLI .. 62
Setup Wizard .. 62
FortiExplorer ... 62
 Installation .. 63
 Microsoft Windows install .. 63
 Apple Macintosh OS X. ... 63
 Configuration options ... 63
 Updating FortiExplorer and firmware .. 63
Configuring NAT mode .. 64
 Configure the interfaces ... 64
 Configure a DNS ... 66
 Add a default route and gateway .. 67
 Add security policies .. 67
Configuring transparent mode ... 69
 Switching to transparent mode ... 69
 Configure a DNS .. 69
 Add security policies .. 70
Verifying the configuration .. 71
Additional configuration .. 72
 Setting the time and date .. 72
 Using the NTP Server ... 72
 Configuring FortiGuard .. 73
 Updating antivirus and IPS signatures. ... 73
Passwords ... 74
 Password considerations ... 74
 Password policy ... 74
 Forgotten password? .. 75
System Administration for FortiOS 4.0 MR3

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrators</td>
<td>75</td>
</tr>
<tr>
<td>Administrator configuration</td>
<td>75</td>
</tr>
<tr>
<td>Regular (password) authentication for administrators</td>
<td>75</td>
</tr>
<tr>
<td>Management access</td>
<td>76</td>
</tr>
<tr>
<td>Tightening Security</td>
<td>76</td>
</tr>
<tr>
<td>Passwords</td>
<td>76</td>
</tr>
<tr>
<td>Preventing unwanted login attempts</td>
<td>77</td>
</tr>
<tr>
<td>Disable admin services</td>
<td>77</td>
</tr>
<tr>
<td>SSH login time out</td>
<td>77</td>
</tr>
<tr>
<td>Administrator lockout</td>
<td>77</td>
</tr>
<tr>
<td>Idle time-out</td>
<td>78</td>
</tr>
<tr>
<td>Administrative ports</td>
<td>78</td>
</tr>
<tr>
<td>Disable interfaces</td>
<td>79</td>
</tr>
<tr>
<td>Change the admin username</td>
<td>79</td>
</tr>
<tr>
<td>Segregated administrative roles</td>
<td>79</td>
</tr>
<tr>
<td>RADIUS authentication for administrators</td>
<td>79</td>
</tr>
<tr>
<td>Configuring LDAP authentication for administrators</td>
<td>80</td>
</tr>
<tr>
<td>TACACS+ authentication for administrators</td>
<td>80</td>
</tr>
<tr>
<td>PKI certificate authentication for administrators</td>
<td>81</td>
</tr>
<tr>
<td>Administrator profiles</td>
<td>81</td>
</tr>
<tr>
<td>super_admin profile</td>
<td>81</td>
</tr>
<tr>
<td>Creating profiles</td>
<td>81</td>
</tr>
<tr>
<td>Global and vdom profiles</td>
<td>82</td>
</tr>
<tr>
<td>Adding administrators</td>
<td>82</td>
</tr>
<tr>
<td>LDAP Admin Access and Authorization</td>
<td>83</td>
</tr>
<tr>
<td>Configure the LDAP server</td>
<td>83</td>
</tr>
<tr>
<td>Add the LDAP server to a user group</td>
<td>84</td>
</tr>
<tr>
<td>Configure the administrator account</td>
<td>84</td>
</tr>
<tr>
<td>Monitoring administrators</td>
<td>84</td>
</tr>
<tr>
<td>Trusted hosts</td>
<td>85</td>
</tr>
<tr>
<td>General Settings</td>
<td>85</td>
</tr>
<tr>
<td>Administrative port settings</td>
<td>86</td>
</tr>
<tr>
<td>Password policies</td>
<td>86</td>
</tr>
<tr>
<td>Display options</td>
<td>86</td>
</tr>
<tr>
<td>Backing up the configuration</td>
<td>86</td>
</tr>
<tr>
<td>Backup and restore a configuration file using SCP</td>
<td>87</td>
</tr>
<tr>
<td>Enable SSH access on the interface</td>
<td>88</td>
</tr>
<tr>
<td>Using the SCP client</td>
<td>88</td>
</tr>
<tr>
<td>SCP public-private key authentication</td>
<td>89</td>
</tr>
<tr>
<td>Restoring a configuration using SCP</td>
<td>89</td>
</tr>
<tr>
<td>Restoring a configuration</td>
<td>89</td>
</tr>
<tr>
<td>Configuration revisions</td>
<td>90</td>
</tr>
</tbody>
</table>
Firmware
- Downloading firmware ... 90
- Upgrading the firmware - web-based manager 91
- Reverting to a previous firmware version 91
- Configuration Revision .. 92
- Upgrading the firmware - CLI .. 93
 - USB Auto-Install ... 94
 - Reverting to a previous firmware version 95
- Installing firmware from a system reboot using the CLI 96
 - Backup and Restore from a USB key 98
 - Testing new firmware before installing 98

Central management 101
- Adding a FortiGate to FortiManager 101
 - FortiGate configuration .. 101
 - Configuring an SSL connection .. 102
 - FortiManager configuration ... 103
- Configuration through FortiManager 103
 - Global objects ... 103
 - Locking the FortiGate web-based manager 104
- Firmware updates ... 104
- FortiGuard ... 105
- Backup and restore configurations 105
- Administrative domains ... 105

Best practices 107
- Hardware ... 107
 - Environmental specifications .. 107
 - Grounding ... 108
 - Rack mount instructions .. 108
- Shutting down ... 109
- Performance ... 109
- Firewall .. 110
- Intrusion protection .. 110
- Antivirus ... 110
- Web filtering ... 111
- Antispam ... 111
- Security ... 111
FortiGuard

FortiGuard Services .. 113
 Support Contract and FortiGuard Subscription Services 114
 FortiGuard Analysis Service Options.................................. 114
Antivirus and IPS ... 115
 Antivirus and IPS Options .. 115
 Manual updates .. 115
 Automatic updates .. 116
 Scheduling updates ... 116
 Push updates .. 116
 Push IP override .. 117
Web filtering ... 118
 Web Filtering and Email Filtering Options 119
 URL verification .. 119
Email filtering ... 120
Security tools .. 120
 URL lookup. .. 120
 IP and signature lookup ... 121
 Online virus scanner ... 121
 Malware removal tools .. 121
Troubleshooting .. 121
 Web-based manager verification 121
 CLI verification .. 123
 Port assignment .. 124
Monitoring .. 125
 Dashboard ... 125
 Widgets. ... 125
 FortiClient connections .. 126
 sFlow ... 126
 Configuration. .. 127
 Enable sFlow. .. 127
 Monitor menus .. 127
Logging .. 128
 FortiGate memory .. 128
 FortiGate hard disk .. 128
 Syslog server .. 128
 FortiGuard Analysis and Management service 129
 FortiAnalyzer ... 130
 Sending logs using a secure connection. 130
 Configuring an SSL connection 131
Alert email .. 131
SNMP .. 132
 SNMP configuration settings 133
 Gigabit interfaces ... 136
 SNMP agent .. 136
 SNMP community .. 136
 Enabling on the interface 138
 Fortinet MIBs .. 138
SNMP get command syntax 140
 Fortinet and FortiGate traps 140
 Fortinet and FortiGate MIB fields 143
 Fortinet MIB .. 143
 FortiGate MIB .. 146

Multicast forwarding 173
 Sparse mode ... 173
 Dense mode .. 174
 Multicast IP addresses 175
 PIM Support .. 175
 Multicast forwarding and FortiGate units 176
 Multicast forwarding and RIPv2 176
 Configuring FortiGate multicast forwarding 177
 Adding multicast security policies 177
 Enabling multicast forwarding 178
 Multicast routing examples 180
 Example FortiGate PIM-SM configuration using a static RP 180
 Configuration steps 181
 FortiGate PIM-SM debugging examples 186
 Checking that the receiver has joined the required group. 186
 Checking the PIM-SM neighbors 186
 Checking that the PIM router can reach the RP 187
 Viewing the multicast routing table (FGT-3) 187
 Viewing the PIM next-hop table 188
 Viewing the PIM multicast forwarding table 188
 Viewing the kernel forwarding table 189
 Viewing the multicast routing table (FGT-2) 189
 Viewing the multicast routing table (FGT-1) 190
 Example multicast destination NAT (DNAT) configuration 191
 Example PIM configuration that uses BSR to find the RP 193
 Commands used in this example 194
 Adding a loopback interface (lo0) 194
 Defining the multicast routing 194
 Adding the NAT multicast policy 195
 Configuration steps 195
 Example debug commands 202

FortiOS™ Handbook v3: System Administration
01-434-142188-20120111
*http://docs.fortinet.com/
Virtual LANs

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID rules</td>
<td>206</td>
</tr>
<tr>
<td>VLAN switching and routing</td>
<td>206</td>
</tr>
<tr>
<td>VLAN layer-2 switching</td>
<td>206</td>
</tr>
<tr>
<td>Layer-2 VLAN example</td>
<td>206</td>
</tr>
<tr>
<td>VLAN layer-3 routing</td>
<td>209</td>
</tr>
<tr>
<td>Layer-3 VLAN example</td>
<td>209</td>
</tr>
<tr>
<td>VLANs in NAT mode</td>
<td>212</td>
</tr>
<tr>
<td>Adding VLAN subinterfaces</td>
<td>213</td>
</tr>
<tr>
<td>Physical interface</td>
<td>213</td>
</tr>
<tr>
<td>IP address and netmask</td>
<td>213</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>213</td>
</tr>
<tr>
<td>VDOM</td>
<td>214</td>
</tr>
<tr>
<td>Configuring security policies and routing</td>
<td>215</td>
</tr>
<tr>
<td>Configuring security policies</td>
<td>215</td>
</tr>
<tr>
<td>Configuring routing</td>
<td>215</td>
</tr>
<tr>
<td>Example VLAN configuration in NAT mode</td>
<td>216</td>
</tr>
<tr>
<td>General configuration steps</td>
<td>217</td>
</tr>
<tr>
<td>Configure the FortiGate unit</td>
<td>217</td>
</tr>
<tr>
<td>Configure the external interface</td>
<td>217</td>
</tr>
<tr>
<td>Add VLAN subinterfaces</td>
<td>218</td>
</tr>
<tr>
<td>Add the firewall addresses</td>
<td>219</td>
</tr>
<tr>
<td>Add the security policies</td>
<td>219</td>
</tr>
<tr>
<td>Configure the VLAN switch</td>
<td>222</td>
</tr>
<tr>
<td>Test the configuration</td>
<td>223</td>
</tr>
<tr>
<td>Testing traffic from VLAN_100 to VLAN_200</td>
<td>223</td>
</tr>
<tr>
<td>Testing traffic from VLAN_200 to the external network</td>
<td>223</td>
</tr>
<tr>
<td>VLANs in transparent mode</td>
<td>223</td>
</tr>
<tr>
<td>VLANS and transparent mode</td>
<td>223</td>
</tr>
<tr>
<td>Add VLAN subinterfaces</td>
<td>224</td>
</tr>
<tr>
<td>Create security policies</td>
<td>225</td>
</tr>
<tr>
<td>Example of VLANS in transparent mode</td>
<td>226</td>
</tr>
<tr>
<td>General configuration steps</td>
<td>227</td>
</tr>
<tr>
<td>Configure the FortiGate unit</td>
<td>227</td>
</tr>
<tr>
<td>Add VLAN subinterfaces</td>
<td>227</td>
</tr>
<tr>
<td>Add the security policies</td>
<td>228</td>
</tr>
<tr>
<td>Configure the Cisco switch and router</td>
<td>230</td>
</tr>
<tr>
<td>Configure the Cisco switch</td>
<td>230</td>
</tr>
<tr>
<td>Configure the Cisco router</td>
<td>231</td>
</tr>
<tr>
<td>Test the configuration</td>
<td>231</td>
</tr>
<tr>
<td>Testing traffic from VLAN_100 to VLAN_200</td>
<td>231</td>
</tr>
<tr>
<td>Troubleshooting VLAN issues</td>
<td>231</td>
</tr>
<tr>
<td>Asymmetric routing</td>
<td>232</td>
</tr>
<tr>
<td>Layer-2 and Arp traffic</td>
<td>232</td>
</tr>
</tbody>
</table>
ARP traffic .. 233
Multiple VDOMs solution .. 233
Vlanforward solution ... 233
Forward-domain solution 234
NetBIOS ... 234
STP forwarding ... 235
Too many VLAN interfaces 235

PPTP and L2TP .. 237
How PPTP VPNs work .. 237
FortiGate unit as a PPTP server 239
 Configuring user authentication for PPTP clients 239
 Configuring a user account 240
 Configuring a user group 240
 Enabling PPTP and specifying the PPTP IP address range 240
 Adding the security policy 241
Configuring the FortiGate unit for PPTP VPN 242
Configuring the FortiGate unit for PPTP pass through 242
 Configuring a virtual IP address 242
 Configuring a port-forwarding security policy 243
Testing PPTP VPN connections 244
Logging VPN events ... 244
Configuring L2TP VPNs ... 244
 Network topology ... 246
 L2TP infrastructure requirements 247
L2TP configuration overview 247
 Authenticating L2TP clients 248
 Enabling L2TP and specifying an address range 248
 Defining firewall source and destination addresses 248
Adding the security policy 249
 Configuring a Linux client 249
 Monitoring L2TP sessions 250
Testing L2TP VPN connections 250
Logging L2TP VPN events 250

Session helpers .. 251
Viewing the session helper configuration 251
Changing the session helper configuration 252
 Changing the protocol or port that a session helper listens on 252
 Disabling a session helper 254
DCE-RPC session helper (dcerpc) 255
DNS session helpers (dns-tcp and dns-udp) 255
File transfer protocol (FTP) session helper (ftp) 256
H.245 session helpers (h245I and h245O) 256
H.323 and RAS session helpers (h323 and ras) 256
Alternate H.323 gatekeepers.. 256
Media Gateway Controller Protocol (MGCP) session helper (mgcp). 257
ONC-RPC portmapper session helper (pmap) 257
PPTP session helper for PPTP traffic (pptp) 257
Remote shell session helper (rsh) 259
Real-Time Streaming Protocol (RTSP) session helper (rtsp) 259
Session Initiation Protocol (SIP) session helper (sip) 260
Trivial File Transfer Protocol (TFTP) session helper (tftp) 260
Oracle TNS listener session helper (tns) 260

Advanced concepts .. 261
Dual internet connections ... 261
Redundant interfaces .. 261
Ping server ... 262
Routing ... 263
Security policies .. 264
Load sharing ... 264
Link redundancy and load sharing 264
Single firewall vs. multiple virtual domains 264
Single firewall vs. vdoms ... 265
Modem .. 267
USB modem port .. 268
Modes ... 268
Configuring stand alone mode .. 268
Configuring redundant mode ... 269
Ping server ... 269
Additional modem configuration 269
Modem interface routing .. 270
DHCP servers and relays .. 270
DHCP Server configuration ... 270
Service ... 272
Reserving IP addresses for specific clients 272
DHCP options .. 273
DHCP Monitor ... 273
Assigning IP address by MAC address 273
DNS services ... 274
DNS queries ... 274
Additional DNS CLI configuration 274
DNS server ... 275
Recursive DNS .. 276
<table>
<thead>
<tr>
<th>Replacement messages list</th>
<th>286</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement message images</td>
<td>287</td>
</tr>
<tr>
<td>Adding images to replacement messages</td>
<td>287</td>
</tr>
<tr>
<td>Modifying replacement messages</td>
<td>287</td>
</tr>
<tr>
<td>Replacement message tags</td>
<td>288</td>
</tr>
<tr>
<td>Mail replacement messages</td>
<td>290</td>
</tr>
<tr>
<td>HTTP replacement messages</td>
<td>291</td>
</tr>
<tr>
<td>Web Proxy replacement messages</td>
<td>293</td>
</tr>
<tr>
<td>FTP Proxy replacement message</td>
<td>295</td>
</tr>
<tr>
<td>FTP replacement messages</td>
<td>295</td>
</tr>
<tr>
<td>NNTP replacement messages</td>
<td>295</td>
</tr>
<tr>
<td>Alert Mail replacement messages</td>
<td>296</td>
</tr>
<tr>
<td>Spam replacement messages</td>
<td>297</td>
</tr>
<tr>
<td>Administration replacement message</td>
<td>298</td>
</tr>
<tr>
<td>Authentication replacement messages</td>
<td>299</td>
</tr>
<tr>
<td>Captive Portal Default replacement messages</td>
<td>302</td>
</tr>
<tr>
<td>FortiGuard Web Filtering replacement messages</td>
<td>302</td>
</tr>
<tr>
<td>IM and P2P replacement messages</td>
<td>303</td>
</tr>
<tr>
<td>Endpoint NAC replacement messages</td>
<td>304</td>
</tr>
<tr>
<td>NAC quarantine replacement messages</td>
<td>305</td>
</tr>
<tr>
<td>Traffic quota control replacement messages</td>
<td>307</td>
</tr>
<tr>
<td>SSL VPN replacement message</td>
<td>307</td>
</tr>
<tr>
<td>MM1 replacement messages</td>
<td>307</td>
</tr>
<tr>
<td>MM3 replacement messages</td>
<td>312</td>
</tr>
<tr>
<td>MM4 replacement messages</td>
<td>314</td>
</tr>
<tr>
<td>MM7 replacement messages</td>
<td>316</td>
</tr>
<tr>
<td>MMS replacement messages</td>
<td>317</td>
</tr>
<tr>
<td>Replacement message groups</td>
<td>318</td>
</tr>
<tr>
<td>Disk</td>
<td>318</td>
</tr>
<tr>
<td>Formatting the disk</td>
<td>318</td>
</tr>
<tr>
<td>Setting space quotas</td>
<td>318</td>
</tr>
<tr>
<td>CLI Scripts</td>
<td>318</td>
</tr>
<tr>
<td>Uploading script files</td>
<td>319</td>
</tr>
<tr>
<td>Rejecting PING requests</td>
<td>320</td>
</tr>
<tr>
<td>Opening TCP 113</td>
<td>320</td>
</tr>
<tr>
<td>Obfuscate HTTP headers</td>
<td>321</td>
</tr>
</tbody>
</table>

Index 323
Introduction

Welcome and thank you for selecting Fortinet products for your network protection. This guide describes a number of administrative tasks to configure and setup the FortiGate unit for the first time, best practices and sample configuration tips to secure your network and the FortiGate unit. It also includes numerous topics covering components of FortiOS that can be used to configure your network and firewall.

Before you begin

Before you begin using this guide, please ensure that:
- You have administrative access to the web-based manager and/or CLI.
- The FortiGate unit is integrated into your network.
- Firmware, FortiGuard Antivirus and FortiGuard Antispam updates are completed.

How this guide is organized

This guide contains the following sections:
- Using the web-based manager provides an overview of the web-based manager interface for FortiOS. If you are new to the FortiOS web-based manager, this chapter provides a high level overview of how to use this method of administration.
- Using the CLI provides an overview of the command line interface (CLI) for FortiOS. If you are new to the FortiOS CLI, this chapter provides a high level overview of how to use this method of administration.
- Basic setup describes the simple setup requirements an Administrator should do to get the FortiGate unit on the network and enabling the flow of traffic.
- Central management describes how to configure the FortiGate unit to use FortiManager as a method of maintaining the device and other features that FortiManager has to facilitate the administration of multiple devices.
- Best practices discusses methods to make the various components of FortiOS more efficient, and offer suggestions on ways to configure the FortiGate unit.
- FortiGuard discusses the FortiGuard network services and configuration examples.
- Monitoring describes various methods of collecting log data and tracking traffic flows and tends.
- Multicast forwarding describes multicasting (also called IP multicasting) and how to configure it on the FortiGate unit.
- Virtual LANs discusses their implementation in FortiOS and how to configure and use them.
- PPTP and L2TP describes these VPN types and how to configure them.
- Session helpers describes what they are and now to view and configure various session helpers.
- Advanced concepts describes more involved administrative topics to enhance network security and traffic efficiency.
Using the web-based manager

This section describes the features of the web-based manager administrative interface (sometimes referred to as a graphical user interface, or GUI) of your unit. This section also explains common web-based manager tasks that an administrator does on a regular basis, as well as online help.

The following topics are included in this section:

- Web-based manager overview
- Web-based manager menus and pages
- Using online help
- Entering text strings
- Basic configurations

Web-based manager overview

The web-based manager is a user-friendly interface for configuring settings and managing the unit. Accessing the web-based manager is easy; by using HTTP or a secure HTTPS connection from any management computer using a web browser. The recommended minimum screen resolution for properly displaying the web-based manager is 1280 by 1024. Some web browsers do not correctly display the windows within the web-based manager interface. Verify that you have a supported web browser by reviewing the Knowledge Base articles, Microsoft Windows web browsers supported by Fortinet products web-based manager (GUI) web browsers, and Mac OS browsers for use with Fortinet hardware web-based manager (GUI).

The web-based manager also provides the CLI Console widget, which enables you to connect to the command line interface (CLI) without exiting out of the web-based manager.

Web-based manager menus and pages

The web-based manager provides access to configuration options for most of the FortiOS features from the main menus. The web-based manager contains the following main menus:

<table>
<thead>
<tr>
<th>System</th>
<th>Configure system settings, such as network interfaces, virtual domains, DHCP services, administrators, certificates, High Availability (HA), system time and set system options.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>Configure static, dynamic and multicast routing and view the router monitor.</td>
</tr>
<tr>
<td>Policy</td>
<td>Configure firewall policies, protocol options and Central NAT Table.</td>
</tr>
<tr>
<td>Firewall Objects</td>
<td>Configure supporting content for firewall policies including scheduling, services, traffic shapers, addresses, virtual IP and load balancing.</td>
</tr>
</tbody>
</table>
Using information tables

Many of the web-based manager pages contain tables of information which you can filter to display specific information. Administrators with read and write access can define the filters.

Using page navigation

The web-based manager pages that contain information and lists that span multiple pages. At the bottom of the page is the page navigation controls that enable you to move between pages.

Figure 1: Page controls

Adding filters to web-based manager lists

To locate a specific set of information or content within multiple pages, you use filters. These are especially useful in locating specific log entries. Depending on the type of information, the filtering options vary.
To create a filter, select Filter Settings, or a filter icon in a column heading. When a filter is applied to a column, the filter icon becomes green. Filter settings are stored in the unit’s configuration and will be maintained the next time that you access any list for which you have added filters.

Filtering variable can include a numeric range such as 25-50 or an IP address or part of an address, or any text string combination, including special characters.

Note that the filtering ignores characters following a “<” unless the followed by a space. For example, the filtering ignores <string but not < string. Filtering also ignores matched opening and closing (< and >) characters and any characters between them. For example, filtering will ignore <string>.

For columns that can contain only specific content, such as log message severity, you can only select a single item from a list.

Using column settings

On pages where large amounts of information is available, not all content can be displayed, or some content may not be of use to you. Using column settings, you can display only that content which is important to your requirements.

To configure column settings, select the Column Settings link at the top right of the page.

Any changes that you make to the column settings of a list are stored in the unit’s configuration and will display the next time that you access the list.

Using online help

This Online Help button system provides context-sensitive help for the current web-based manager page, as well as access to the online version of the FortiGate Handbook.

Figure 2: A context-sensitive online help page (content pane only)
To view the online help table of contents or index, and to use the search, select **Show Navigation**.

Figure 3: Online help page with navigation pane and content pane

<table>
<thead>
<tr>
<th>Contents</th>
<th>Display the online help table of contents. The online help is organized in the same way as the web-based manager.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Display the online help index.</td>
</tr>
<tr>
<td>Search</td>
<td>Display the online help search.</td>
</tr>
<tr>
<td>Show in Contents</td>
<td>Select Show in Contents to display the location of the current help page within the table of contents. If you have used the index, search, or hyperlinks to find information in the online help, the table of contents may not be visible or the table of contents may display where you are within the table of contents.</td>
</tr>
</tbody>
</table>

Online help search tips

- If you search for multiple words, the search finds only those results that contain all of the words that you entered. The search does not find pages that only contain one of the words that you entered.
- The pages found by the search are ranked in order of relevance. The higher the ranking, the more likely the page includes the information you are searching for. Help pages with the search words in the help page title are ranked highest.
- You can use the asterisk (*) as a wildcard. For example, if you search for **auth** the search finds help pages containing **auth**, **authenticate**, **authentication**, **authenticates**.

Using the keyboard to navigate in the online help

You can use the keyboard shortcuts listed below to display and find information in the online help.
Entering text strings

The configuration of a FortiGate unit is stored as configuration settings in the FortiOS configuration database. To change the configuration you can use the web-based manager or CLI to add, delete or change configuration settings. These configuration changes are stored in the configuration database as you make them.

Individual settings in the configuration database can be text strings, numeric values, selections from a list of allowed options, or on/off (enable/disable) settings.

Entering text strings (names)

Text strings are used to name entities in the configuration. For example, the name of a firewall address, administrative user, and so on. You can enter any character in a FortiGate configuration text string except, to prevent Cross-Site Scripting (XSS) vulnerabilities, text strings in FortiGate configuration names cannot include the following characters:

" (double quote), & (ampersand), ' (single quote), < (less than) and > (greater than)

Most web-based manager text string fields make it easy to add an acceptable number of characters and prevent you from adding the XSS vulnerability characters.

From the CLI, you can also use the `tree` command to view the number of characters that are allowed in a name field. For example, firewall address names can contain up to 64 characters. When you add a firewall address to the web-based manager you are limited to entering 64 characters in the firewall address name field. From the CLI you can enter the following `tree` command to confirm that the firewall address name field allows 64 characters.

```
config firewall address
  tree
  -- [address] --*name (64)
    |- subnet
    |- type
    |- start-ip
    |- end-ip
    |- fqdn (256)
    |- cache-ttl (0,86400)
    |- wildcard
```
| comment (64 xss) |
| associated-interface (16) |
| color (0,32) |

The `tree` command output also shows the number of characters allowed for other firewall address name settings. For example, the fully-qualified domain name (fqdn) field can contain up to 256 characters.

Entering numeric values

Numeric values set various sizes, rates, numeric addresses, and other numeric values. For example, a static routing priority of 10, a port number of 8080, or an IP address of 10.10.10.1. Numeric values can be entered as a series of digits without spaces or commas (for example, 10 or 64400), in dotted decimal format (for example the IP address 10.10.10.1) or as in the case of MAC or IPv6 addresses separated by colons (for example, the MAC address 00:09:0F:B7:37:00). Most numeric values are standard base-10 numbers, but some fields (again such as MAC addresses) require hexadecimal numbers.

Most web-based manager numeric value fields make it easy to add the acceptable number of digits within the allowed range. CLI help includes information about allowed numeric value ranges. Both the web-based manager and the CLI prevent you from entering invalid numbers.

Selecting options from a list

If a configuration field can only contain one of a number of selected options, the web-based manager and CLI present you a list of acceptable options and you can select one from the list. No other input is allowed. From the CLI you must spell the selection name correctly.

Enabling or disabling options

If a configuration option can only be on or off (enabled or disabled) the web-based manager presents a check box or other control that can only be enabled or disabled. From the CLI you can set the option to **enable** or **disable**.

Dashboard

The Dashboard menu provides a way to access information about network activity and events, as well as configure basic system settings. FortiOS includes a default dashboard, called Status. You can add more dashboards to contain the content you need at your fingertips.

Each information “chunk” is within a widget. Widgets provide an easy and quick way to view a variety of information, such as statistical information or network activity. There are a selection of widgets to choose from by selecting the **Widgets** option.

Administrators must have read and write privileges for adding and configuring dashboards and widgets.

💡 Your browser must have Java script enabled to view the Dashboard page.
Adding dashboards

Dashboards that you create are automatically added under the default status and usage dashboards. You can add, remove or rename a dashboard, regardless of whether it is default. You can also reset the Dashboard menu to its default settings by selecting Reset Dashboards.

If VDOMs are enabled, only the dashboards within Global are available for configuration.

To add a dashboard

1. Go to System > Dashboard > Status.
2. Select Dashboard, located at the top left of the page.
3. Select Add Dashboard.
4. Enter a name for the dashboard.
5. Select OK.

Adding widgets to a dashboard

To add a widget to a dashboard, select Widget located at the top left of the dashboard page. Select a widget and add it to the dashboard. Select the red X-box to close the window.

Figure 4: A minimized display

System Information widget

The System Information widget status information on the FortiGate unit and provides the access point to update the firmware and backup the configurations.

<table>
<thead>
<tr>
<th>System Information widget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Name</td>
</tr>
<tr>
<td>Serial Number</td>
</tr>
</tbody>
</table>
Operation Mode
The current operating mode of the FortiGate unit. A FortiGate unit can operate in NAT mode or transparent mode. Select Change to switch between NAT and transparent mode. For more information, see Changing the operation mode.

If virtual domains are enabled, this field shows the operating mode of the current virtual domain. The Global System Status dashboard does not include this information.

HA Status
The status of high availability within the cluster.
Standalone indicates the FortiGate unit is not operating in HA mode.
Active-Passive or Active-Active indicate the FortiGate unit is operating in HA mode.
Select Configure, to change the HA configuration.

Cluster Name
The name of the HA cluster for this FortiGate unit.
The FortiGate unit must be operating in HA mode to display this field.

Cluster Members
The FortiGate units in the HA cluster. Information displayed about each member includes host name, serial number, and whether the FortiGate unit is a primary (master) or subordinate (slave) FortiGate unit in the cluster.
The FortiGate unit must be operating in HA mode with virtual domains disabled to display this information.

Virtual Cluster 1
Virtual Cluster 2
The role of each FortiGate unit in virtual cluster 1 and virtual cluster 2.
The FortiGate unit must be operating in HA mode with virtual domains enabled to display this information.

System Time
The current date and time. Select Change, to configure the system time. For more information, see Configuring system time.

Firmware Version
The version of the current firmware installed on the FortiGate unit.
Select Update to upload a newer or older firmware version. For more information, see Changing the firmware.

System Configuration
The time period of when the configuration file was backed up. Select Backup to back up the current configuration. For more information, see Backing up the configuration.
To restore a configuration file, select Restore. For more information, see Restoring your firmware configuration.

Current Administrator
The number of administrators currently logged into the FortiGate unit.
Select Details to view more information about each administrator that is currently logged in.
If you want to changed the current administrator’s password, see Changing the currently logged in administrator’s password.

Uptime
The time in days, hours, and minutes since the FortiGate unit was started or rebooted.

Virtual Domain
Status of virtual domains on your FortiGate unit. Select Enable or Disable to change the status of virtual domains feature.
If you enable or disable virtual domains, your session will be terminated and you will need to log in again.
Changing the FortiGate unit’s host name

The host name appears in the Host Name row, in the System Information widget. The host name also appears at the CLI prompt when you are logged in to the CLI and as the SNMP system name.

The only administrators that can change a FortiGate unit’s host name are administrators whose admin profiles permit system configuration write access. If the FortiGate unit is part of an HA cluster, you should use a unique host name to distinguish the FortiGate unit from others in the cluster.

To change the host name on the FortiGate unit, in the System Information widget, select Change in the Host Name row.

Changing the operation mode

FortiGate units and individual VDOMs can operate in NAT or transparent mode. From the System Information dashboard widget you can change the operating mode for your FortiGate unit or for a VDOM and perform sufficient network configuration to ensure that you can connect to the web-based manager in the new mode.

NAT mode

In NAT mode (also called NAT mode), the FortiGate unit is visible to the network that it is connected to. All of its interfaces are on different subnets. Each interface that is connected to a network must be configured with an IP address that is valid for that subnet. The FortiGate unit functions as a router, routing traffic between its interfaces. Security policies control communications through the FortiGate unit to both the Internet and between internal networks. In NAT mode, the FortiGate unit performs network address translation before IP packets are sent to the destination network.

For example, a company has a FortiGate unit as their interface to the Internet. The FortiGate unit also acts as a router to multiple sub-networks within the company. In this situation the FortiGate unit is set to NAT mode. Using this mode, the FortiGate unit can have a designated port for the Internet, in this example, wan1 with an address of 172.20.120.129, which is the public IP address. The internal network segments are behind the FortiGate unit and invisible to the public access, for example port 2 with an address of 10.10.10.1. The FortiGate unit translates IP addresses passing through it to route the traffic to the correct subnet or the Internet.

Transparent Mode

In transparent mode, the FortiGate unit is invisible to the network. All of its interfaces are on the same subnet and share the same IP address. To connect the FortiGate unit to your network, all you have to do is configure a management IP address and a default route.

You would typically use the FortiGate unit in transparent mode on a private network behind an existing firewall or behind a router. In transparent mode, the FortiGate unit also functions as a firewall. Security policies control communications through the FortiGate unit to the Internet and internal network. No traffic can pass through the FortiGate unit until you add security policies.
For example, the company has a router or other firewall in place. The network is simple enough that all users are on the same internal network. They need the FortiGate unit to perform application control, antivirus and intrusion protection and similar traffic scanning. In this situation the FortiGate unit is set to transparent mode. The traffic passing through the FortiGate unit does not change the addressing from the router to the internal network. Security policies and UTM profiles define the type of scanning the FortiGate unit performs on traffic entering the network.

To switch from NAT to transparent mode
1. From the System Information dashboard widget select Change beside Operation Mode.
2. From the Operation Mode list, select Transparent.
3. Enter the Management IP address and Netmask. This is the IP address to connect to when configuring and maintaining the device.
4. Enter the Default Gateway.
5. Select OK.

To change the transparent mode management IP address
1. From the System Information dashboard widget select Change beside Operation Mode.
2. Enter a new IP address and netmask in the Management IP/Network field as required and select OK.

Your web browser is disconnected from the web-based manager. To reconnect to the web-based manager browse to the new management IP address.

To switch from transparent to NAT mode
1. From the System Information dashboard widget select Change beside Operation Mode.
2. From the Operation Mode list, select NAT.
3. Enter a valid IP address and netmask for the network from which you want to manage the FortiGate unit.
4. Select the interface to which the Interface IP/Netmask settings apply.
5. Enter the IP address default gateway required to reach other networks from the FortiGate unit. This option address a default route to the static routing table. The gateway setting of this default route is set to the IP address that you enter and the device setting of this default route is set to the interface selected in the Device field.
6. After the FortiGate unit switches to NAT mode you may need to go to Router > Static Route and edit this default route.
7. Select OK.

Configuring system time
The FortiGate unit’s system time can be changed using the System Information widget by selecting Change in the System Time row.

<table>
<thead>
<tr>
<th>Time Settings page</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Time</td>
</tr>
<tr>
<td>Refresh</td>
</tr>
</tbody>
</table>
Daylight savings time is enabled by default. You can disable daylight savings time using the CLI commands:

```
config system global
set dst disable
end
```

Changing the firmware

To avoid losing configuration settings you should always back up your configuration before changing the firmware image.

Administrators whose admin profiles permit maintenance read and write access can change the FortiGate unit’s firmware. Firmware images can be installed from a number of sources including a local hard disk, a local USB disk, or the FortiGuard Network.

To change the firmware, go to System > Dashboard > Status > System Information widget and select the Update link on the Firmware Version row.

Firmware Upgrade/Downgrade page

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgrade From</td>
<td>Select the firmware source from the drop down list of available sources.</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>This appears only when selecting FortiGuard Network is selected from the Upgrade From drop-down list. Select a firmware version from the drop-down list. If downgrading the firmware on the FortiGate unit, select the check box beside Allow Firmware Downgrade.</td>
</tr>
<tr>
<td>Upgrade File</td>
<td>Browse to the location of the firmware image on your local hard disk. This field is available for local hard disk and USB only.</td>
</tr>
<tr>
<td>Allow Firmware Downgrade</td>
<td>Select to confirm the installation of an older firmware image (downgrade). This appears only when selecting FortiGuard Network is selected from the Upgrade From drop-down list.</td>
</tr>
</tbody>
</table>

Time Zone | Select the current system time zone for the FortiGate unit.
Set Time | Select to set the system date and time to the values.
Synchronize with NTP Server | Select to use a Network Time Protocol (NTP) server to automatically set the system date and time. You must specify the server and synchronization interval. FortiGate units use NTP Version 4. For more information about NTP see http://www.ntp.org.
Server | Enter the IP address or domain name of an NTP server. To find an NTP server that you can use, see http://www.ntp.org.
Sync Interval | Specify how often the FortiGate unit should synchronize its time with the NTP server.

http://www.ntp.org
Backing up the configuration

Administrators can back up the FortiGate unit’s configuration file from the System Information widget. Select Backup in the System Configuration row, to back up the firmware configuration file to a local computer, USB disk or to a FortiManager unit.

You should always back up your configuration whenever you make any modifications to the device configuration or performing any firmware updates or changes.

Backup page

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local PC</td>
<td>Select to back up the configuration file to a local management computer.</td>
</tr>
<tr>
<td>FortiManager</td>
<td>Select to back up the configuration file to a FortiManager unit. The Central Management settings must be enabled and a FortiManager unit connected with the FortiGate unit so that the FortiGate unit can send the configuration file to the FortiManager unit. To enable central management, go to System > Admin > Central Management.</td>
</tr>
<tr>
<td>USB Disk</td>
<td>Select to back up the configuration file to a USB key that is connected to the FortiGate unit.</td>
</tr>
<tr>
<td>Full Config</td>
<td>Select to backup the full VDOM configuration. This appears only when the FortiGate unit has VDOM configuration enabled.</td>
</tr>
<tr>
<td>VDOM Config</td>
<td>Select to backup the only the VDOM configuration file. This option backs up only the configuration file within that VDOM. Select the VDOM from the drop-down list, and select Backup.</td>
</tr>
<tr>
<td>Encrypt configuration file</td>
<td>Select to enable a password to the configuration file for added security.</td>
</tr>
<tr>
<td>Password</td>
<td>Enter the password that will be used to restore the configuration file.</td>
</tr>
<tr>
<td>Confirm</td>
<td>Re-enter the password.</td>
</tr>
</tbody>
</table>

Formatting USB

The FortiGate unit enables you to back up the configuration of the device to a USB flash drive. The USB flash drive must be formatted as a FAT16 disk.

To format the USB flash drive, either use the CLI command `exe usb-disk format` or within Windows at a command prompt, enter the command...
Using the web-based manager Dashboard

"format <drive_letter>: /FS:FAT /V:<drive_label>
... where <drive_letter> is the letter of the connected USB flash drive and <drive_label> is the name to give the USB drive.

Remote FortiManager backup and restore options

After successfully connecting to the FortiManager unit from your FortiGate unit, you can back up and restore your configuration to and from the FortiManager unit.

A list of revisions is displayed when restoring the configuration from a remote location. The list allows you to choose the configuration to restore. To use the FortiManager unit as a method of backup and restore of configuration files, you must first configure a connection between the two devices. For more information, see Central management.

Remote FortiGuard backup and restore options

Your FortiGate unit can be remotely managed by a central management server, which is available when you register for the FortiGuard Analysis and Management Service. FortiGuard Analysis and Management Service is a subscription-based service and is purchased by contacting support.

After registering, you can back up or restore your configuration. FortiGuard Analysis and Management Service is useful when administering multiple FortiGate units without having a FortiManager unit. Using this service you can also upgrade the firmware. Upgrading the firmware is available in the Firmware Upgrade section of the backup and restore menu.

When restoring the configuration from a remote location, a list of revisions is displayed so that you can choose the configuration file to restore.

The FortiGuard-FortiManager protocol is used when connecting to the FortiGuard Analysis and Management Service. This protocol runs over SSL using IPv4/TCP port 541 and includes the following functions:

- detects FortiGate unit dead or alive status
- detects management service dead or alive status
- notifies the FortiGate units about configuration changes, AV/IPS database update and firewall changes.

Restoring your firmware configuration

Administrators can restore a configuration file that was backed up using the System Information widget. If the configuration file was encrypted, you will need the password to restore the configuration file.

<table>
<thead>
<tr>
<th>Restore</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local PC</td>
<td>Select to back up the configuration file to a local management computer.</td>
</tr>
<tr>
<td>FortiManager</td>
<td>Select to back up the configuration file to a FortiManager unit. The Central Management settings must be enabled and a FortiManager unit connected with the FortiGate unit so that the FortiGate unit can send the configuration file to the FortiManager unit. To enable central management, go to System > Admin > Central Management.</td>
</tr>
<tr>
<td>USB Disk</td>
<td>Select to back up the configuration file to a USB key that is connected to the FortiGate unit.</td>
</tr>
</tbody>
</table>
Viewing online administrators

The System Information widget enables you to view information about the administrators logged into the FortiGate unit. To view logged in administrators, in the System Information widget, select Details. in the Current Administrator row.

Administrators logged in window (System Information widget)

Lists the administrators that are currently logged into the FortiGate unit.

Disconnect	To disconnect an administrator, select the check box next to the administrator’s name and select Disconnect. This is available only if your admin profile gives you System Configuration write permission. You cannot log off the default “admin” user.
Refresh	Select to update the list.
User Name	The administrator account name.
Type	The type of access: http, https, jsconsole, sshv2.
From	The administrator’s IP address. If Type is jsconsole, the value in From is N/A.
Time	The date and time the administrator logged on.

Changing the currently logged in administrator’s password

Use the System Information widget, to change your password. To do this, select the Change Password option in the Current Administrator row.

Edit Password

<table>
<thead>
<tr>
<th>Administrator</th>
<th>The name of the administrator who is changing their password.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Password</td>
<td>Enter your current password.</td>
</tr>
<tr>
<td>New Password</td>
<td>Enter the new password.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Enter the new password again to confirm.</td>
</tr>
</tbody>
</table>

License Information widget

License Information displays the status of your technical support contract and FortiGuard subscriptions. The FortiGate unit updates the license information status indicators automatically when attempting to connect to the FortiGuard Distribution Network (FDN). FortiGuard Subscriptions status indicators are green if the FDN was reachable and the license was valid during the last connection attempt, grey if the FortiGate unit cannot connect to the FDN, and orange if the FDN is reachable but the license has expired.
When a new FortiGate unit is powered on, it automatically searches for FortiGuard services. If the FortiGate unit is configured for central management, it will look for FortiGuard services on the configured FortiManager system. The FortiGate unit sends its serial number to the FortiGuard service provider, which then determines whether the FortiGate unit is registered and has valid contracts for FortiGuard subscriptions and FortiCare support services. If the FortiGate unit is registered and has a valid contract, the License Information is updated.

If the FortiGate unit is not registered, any administrator with the super_admin profile sees a reminder message that provides access to a registration form.

When a contract is due to expire within 30 days, any administrator with the super_admin profile sees a notification message that provides access to an Add Contract form. Simply enter the new contract number and select Add. Fortinet Support also sends contract expiry reminders.

You can optionally disable notification for registration or contract inquiry using the config system global command in the CLI. Selecting any of the Configure options will take you to the Maintenance page.

<table>
<thead>
<tr>
<th>License Information widget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Contract</td>
</tr>
<tr>
<td>Displays details about your current Fortinet Support contract.</td>
</tr>
<tr>
<td>- If Not Registered appears, select Register to register the FortiGate unit.</td>
</tr>
<tr>
<td>- If Expired appears, select Renew for information on renewing your technical support contract. Contact your local reseller.</td>
</tr>
<tr>
<td>- If Registered appears the name of the support that registered this FortiGate unit is also displayed.</td>
</tr>
<tr>
<td>- You can select Login Now to log into the Fortinet Support account that registered this FortiGate unit.</td>
</tr>
<tr>
<td>The support contract section also includes information on the number of FortiClient users connecting to the FortiGate unit. It displays the number of FortiClient connections allowed, and the number of users connecting. By selecting the Details link for the number of connections, you can view more information about the connecting user, including IP address, user name and type of operating system the user is connecting with.</td>
</tr>
</tbody>
</table>

| FortiGuard Services |
| Displays the currently installed version of the attack and virus definitions for the various UTM services from FortiGuard. Select Renew to update any of the licenses. |

| Virtual Domain |
| Displays the maximum number of virtual domains the FortiGate unit supports with the current license. |
| For high-end models, you can select the Purchase More link to purchase a license key through Fortinet technical support to increase the maximum number of VDOMs. |

| FortiClient Software |
| View information about the latest version of FortiClient licenses and users connecting using the software. |

Manually updating FortiGuard definitions

You can update the definition files for a number of FortiGuard services from the License Information widget.
To update FortiGuard definitions manually

1. Download the latest update files from Fortinet support site and copy it to the computer that you use to connect to the web-based manager.
2. Log in to the web-based manager and locate the License Information widget.
3. In the License Information widget, in the AV Definitions row, select Update.
4. Select Browse and locate the update file, or type the path and filename.
5. Select OK.
6. Verify the update was successful by locating the License Information widget and viewing the date given in the row.

FortiGate unit Operation widget

The Unit Operation widget is an illustrated version of the FortiGate unit’s front panel that shows the status of the FortiGate unit’s network interfaces. The interface appears green, when the interface is connected. Hover the mouse pointer over the interface to view details about the interface.

The Unit Operation widget also is where you reboot or shutdown the FortiGate unit. Icons around the front panel indicate when the FortiGate unit is connected to a FortiAnalyzer or FortiManager device, or FortiClient installations. Select the icon in the widget to jump to the configuration page for each device. When connected to one of these devices, a green check mark icon appears next to the icon. If the device communication is configured, but the device is unreachable, a red X appears.

System Resources widget

The System Resources widget displays basic FortiGate unit resource usage. This widget displays the information for CPU and memory in either real-time or historical data. For FortiGate units with multiple CPUs, you can view the CPU usage as an average of all CPUs or each one individually.

Use the Refresh icon when you want to view current system resource information, regardless of whether you are viewing real-time or historical type format.

To change the resource view from real-time to historical, or change the CPU view (for multiple CPU FortiGate units), select the Edit icon (visible when you hover the mouse over the widget).

When viewing CPU and memory usage in the web-based manager, only the information for core processes displays. CPU for management processes, is excluded. For example, HTTPS connections to the web-based manager.

Alert Message Console widget

Alert messages help you monitor system events on your FortiGate unit such as firmware changes, network security events, or virus detection events. Each message shows the date and time that the event occurred.

The types of messages can appear in the Alert Message Console include:

<table>
<thead>
<tr>
<th>System restart</th>
<th>The system restarted. The restart could be due to operator action or power off/on cycling.</th>
</tr>
</thead>
<tbody>
<tr>
<td>System shutdown</td>
<td>An administrator shut down the FortiGate unit from the web-based manager or CLI.</td>
</tr>
</tbody>
</table>
You can configure the alert message console settings to control what types of messages are displayed on the console.

To configure the Alert Message Console

1. Locate the Alert Message Console widget within the Dashboard menu.
2. Select the *Edit* icon in the *Alert Message Console* title bar.
3. Select the types of alerts that you do not want to be displayed in the widget.
4. Select *OK*.

Log and Archive Statistics widget

The *Log and Archive Statistics* widget displays the activity of what is DLP archiving, network traffic, and security problems including attack attempts, viruses caught, and spam email caught.

The information displayed in the *Log and Archive Statistics* widget is derived from log messages. Various configuration settings are required to collect data, as described below.

Log and Archive Statistics widget

| Since | The date and time when the counts were last reset. Counts are reset when the FortiGate unit reboots, or when you select *Reset* in the title bar area. |
A summary of the HTTP, HTTPS, MM1, MM3, MM4, MM7, email, FTP, IM, and VoIP (also called session control) traffic that has passed through the FortiGate unit, and has been archived by DLP. MM1, MM3, MM4, and MM7 are only available in FortiOS Carrier.

This widget also indicates the average DLP archive bytes per day since the last time it was reset.

The Details pages list the last items of the selected type—up to 64 items—and provides links to the FortiAnalyzer unit where the archived traffic is stored. If logging to a FortiAnalyzer unit is not configured, the Details pages provide a link to Log & Report > Log Config > Log Settings.

You configure the FortiGate unit to collect DLP archive data for the widget by configuring a DLP sensor to archive its log data.

You must also add the profile to a security policy. When the security policy receives sessions for the selected protocols, meta-data is added to the statistics widget.

In FortiOS Carrier, you can configure an MMS profile to collect statistics for MM1, MM3, MM4 and MM7 traffic.

The Email statistics are based on email POP3, IMAP and SMTP protocols. If your FortiGate unit supports SSL content scanning and inspection, POP3S, IMAPS and SMTPS are also included.

The IM statistics are based on the AIM, ICQ, MSN, and Yahoo! protocols and configured by selecting Archive in DLP Sensors for IM DLP rules.

The VoIP statistics are based on the SIP, SIMPLE and SCCP session control protocols and configured by selecting Archive in DLP Sensors for Session Control DLP rules.

A summary of traffic, viruses, attacks, spam email messages, and blocked URLs that the FortiGate unit has logged.

DLP data loss detected displays the number of sessions that have matched DLP sensor profiles. DLP collects meta data about all sessions matched by DLP sensors and records this meta-data in the DLP log. Every time a DLP log message is recorded, the DLP data loss detected number increases. If you are using DLP for summary or full archiving the DLP data loss detected number can get very large. This number may not indicate that data has been lost or leaked.

Viewing DLP archive section of the Log and Archive Statistics widget

From the Log and Archive Statistics widget, you can view statistics about HTTP, HTTPS, FTP and IM traffic coming through the FortiGate unit. In FortiOS Carrier, you can view the MM1, MM3, MM4, MM7 email statistics. Select the Details link beside each traffic type to view more information.

DLP archive information is viewed from the DLP Archive section of the Log and Archive Statistics widget. You must select Details to view the available archive information.
Viewing the Log section of the Log and Archive Statistics widget

From the Log and Archive Statistics widget, you can view statistics about the network attacks that the FortiGate unit has stopped, statistics on viruses caught, attacks detected, spam email detected, and URLs blocked. Select the Details link beside each attack type to view more information.

CLI Console widget

The CLI Console widget enables you to access the CLI without exiting from the web-based manager.

The two controls located on the CLI Console widget title bar are Customize, and Detach.

- Detach moves the CLI Console widget into a pop-up window that you can resize and reposition. Select Attach. to move the widget back to the dashboard’s page.
- Customize enables you to change the appearance of the console by selecting fonts and colors for the text and background.

Session History widget

The Session History widget displays the total session activity on the device. Activity displays on a per second basis. Select the Edit icon in the title bar (which appears when you hover the mouse over the widget) to change the time period for the widget.

Top Sessions widget

The Top Sessions widget polls the FortiGate unit for session information for IPv4 or IPv6 addresses, or both. Rebooting the FortiGate unit will reset the Top Session statistics to zero.

When you select Details to view the current sessions list, a list of all sessions currently processed by the FortiGate unit.

Detailed information is available in System > Monitor > Sessions. Use the following table to modify the default settings of the Top Sessions widget.

Traffic History widget

The Traffic History widget displays the traffic on one selected interface over a specified time period.

Only one interface can be monitored at a time. By default, no interface is monitored.

Configure an interface to monitor by selecting the Edit icon in the title bar (which appears when you hover the mouse over the widget) and choosing the interface from the drop down menu. All traffic history data is cleared when you select Apply.

To expand the information for the widget, select Enlarge in the title bar area. The data will appear in a larger, pop up window.

You can modify several default settings for this widget when you select the Edit icon in the title bar (which appears when you hover the mouse over the widget).

RAID monitor widget

The RAID Monitor widget displays the current state of the RAID array and each RAID disk. This widget does not display unless the FortiGate unit has more than one disk installed, and is not available for FortiOS Carrier.

<table>
<thead>
<tr>
<th>RAID monitor widget</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure</td>
<td>Select to configure the RAID array, or rebuild a degraded array.</td>
</tr>
<tr>
<td>Array Status</td>
<td>Displays the status of the RAID array.</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Array status icon</td>
<td>- Green with a check mark shows a healthy RAID array.</td>
</tr>
<tr>
<td></td>
<td>- Yellow triangle shows the array is in a degraded state but it is still functioning. A degraded array is slower than a healthy array. Rebuild the array to fix the degraded state.</td>
</tr>
<tr>
<td></td>
<td>- A wrench shows the array is being rebuilt. Positioning the mouse over the array status icon displays a text message of the status of the array.</td>
</tr>
<tr>
<td>Disk status icon</td>
<td>There is one icon for each disk in the array.</td>
</tr>
<tr>
<td></td>
<td>- Green with a check mark shows a healthy disk.</td>
</tr>
<tr>
<td></td>
<td>- Red with an X shows the disk has failed and needs attention. Positioning the mouse over the disk status icon displays the status of the disk, and the storage capacity of the disk.</td>
</tr>
<tr>
<td>RAID Level</td>
<td>The RAID level of this RAID array. The RAID level is set as part of configuring the RAID array.</td>
</tr>
<tr>
<td>Disk Space Usage</td>
<td>The bar shows the percentage of the RAID array that is currently in use.</td>
</tr>
<tr>
<td>Status bar</td>
<td>Displays the amount of RAID array storage that is being used, the amount of storage that is free, and the total storage in the RAID array. The values are in GB.</td>
</tr>
<tr>
<td></td>
<td>Used added to Free should equal Total.</td>
</tr>
<tr>
<td>Synchronizing status</td>
<td>Display the percent complete of the RAID array synchronization. Synchronizing may take several hours.</td>
</tr>
<tr>
<td></td>
<td>When synchronizing the status of the RAID array will indicate synchronizing is happening in the background.</td>
</tr>
<tr>
<td></td>
<td>Synchronizing progress bar is visible only when the RAID array is synchronizing.</td>
</tr>
<tr>
<td></td>
<td>You may need to select the refresh icon in the widget title bar to update this progress bar.</td>
</tr>
<tr>
<td>Rebuild status</td>
<td>Display the percent complete of the RAID array rebuild. Rebuilding the array may take several hours.</td>
</tr>
<tr>
<td></td>
<td>While rebuilding the array, it is in a degraded and vulnerable state — any disk failure during a rebuild will result in data loss.</td>
</tr>
<tr>
<td></td>
<td>A warning is displayed indicating the RAID array is running in reduced reliability mode until the rebuild is completed.</td>
</tr>
<tr>
<td></td>
<td>You may need to select the refresh icon in the widget title bar to update this progress bar.</td>
</tr>
</tbody>
</table>
RAID disk configuration

The RAID disk is configured from the Disk Configuration page.

<table>
<thead>
<tr>
<th>Disk Configuration page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID level</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Size</td>
</tr>
<tr>
<td>Rebuild RAID</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Disk#</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Top Application Usage widget

The Top Application Usage widget shows the volume of traffic passing through the FortiGate unit classified by application type as either a chart or a table. The chart displays applications in order of use.

From the chart or table display you can:

- View traffic volumes by pausing the mouse pointer over each bar.
- Select an application type on the graph to view information about the source addresses that used the application and the amount of data transferred by sessions from each source address.

Top application usage data collection is started by adding application control lists to security policies. Sessions accepted by security policies (with no application control list applied to that security policy) do not contribute to the data displayed.

Use the following table to modify the default settings for the Top Application Usage widget.

<table>
<thead>
<tr>
<th>Status</th>
<th>The status of this disk. Options include OK, and unavailable. A disk is unavailable if it is removed or has failed.</th>
</tr>
</thead>
</table>
| Member | Display if the selected disk is part of the RAID array.
- A green icon with a check mark indicates the disk is part of the array.
- A grey icon with an X indicates the disk is not part of the RAID array.
A disk may be displayed as healthy on the dashboard display even when it is not a member in the RAID array.
A disk may be available but not used in the RAID array. For example three disks in a RAID 1 array, only two are used. |
| Capacity | The storage capacity that this drive contributes to the RAID array.
The full storage capacity of the disk is used for the RAID array automatically.
The total storage capacity of the RAID array depends on the capacity and numbers of the disks, and the RAID level of the array. |

Storage widget

The Storage widget displays the status of disks currently installed on your FortiGate unit. The status includes how much space is used and how much free space is available. You can find out more detailed information about a disk’s status by going to System > Config > Disk. The Storage page displays information regarding the disk’s health, RAID events, visual representation of the disk, and configuration of the management of the disk.

P2P Usage widget

The P2P Usage widget displays the total bytes and total bandwidth for each supported instant messaging client. These clients are WinNY, BitTorrent, eDonkey, Guntella, and KaZaa. With P2P Usage, you can only modify the default name of the widget.
Per-IP Bandwidth Usage widget

The Per-IP Bandwidth Usage widget displays the per-IP address session data. The data, displays each IP address that initiated the traffic (and its current bandwidth consumption), and is similar to the top session widget. Instead of viewing the IP address of the person who initiated the traffic, you can choose to view their name by selecting Resolve Host Name in the editing window.

VoIP Usage widget

The VoIP Usage widget displays current active VoIP call information (using over SIP and SCCP protocols), which include complete calls, calls that have been dropped, failed or went unanswered.

IM Usage widget

The IM Usage widget displays instant messaging clients and their activity that is occurring on your network, including chats, messages, file transfer between clients, and any voice chats. IM Usage provides this information for IM, Yahoo!, AIM, and ICQ.

Network Protocol Usage

The Network Protocol Usage widget displays protocol activity over a defined time period and the amount of bandwidth used during the activity.

Basic configurations

Before going ahead and configuring security policies, users, and UTM profiles, you should perform some basic configurations to set up your FortiGate unit.

Changing your administrator password

By default, you can log in to the web-based manager by using the admin administrator account and no password. It is highly recommended that you add a password to the admin administrator account. For improved security, you should regularly change the admin administrator account password and the passwords for any other administrator accounts that you add.

To change an administrator’s password, go to System > Admin > Administrators, edit the administrator account, and then change the password.

For details on selecting a password, and password best practices, see “Passwords” on page 74.

If you forget or lose an administrator account password and cannot log in to the unit, see the Fortinet Knowledge Base article Recovering a lost FortiGate administrator account password.

Changing the web-based manager language

The default language of the web-based manager is English. A selection of localized iterations are available to selected from. For best results, you should select the language that the management computer operating system uses.

To change the language, go to System > Admin > Settings. In the Display Settings section, select the language you want from the Language drop-down list.
Changing administrative access

Through administrative access, an administrator can connect to the FortiGate unit. Access is available through a number of services including HTTPS and SSH. The default configuration allows administrative access to one or more of the unit’s interfaces as described in the QuickStart Guide.

To change administrative access

1. Go to System > Network > Interface.
2. Select the interface.
3. Select the administrative access type or types for that interface.
4. Select OK.

Changing the web-based manager idle timeout

By default, the web-based manager disconnects administrative sessions if no activity occurs for five minutes. This prevents someone from using the web-based manager if the management PC is left unattended.

To change the idle timeout

1. Go to System > Admin > Settings.
2. In the Administration Settings section, enter the time in minutes in the Idle Timeout field.
3. Select Apply.

Switching VDOMs

When VDOMs are enabled, a menu appears in the left column called Current VDOM. This menu displays a drop-down list that lists the configured VDOMs.

To switch to a VDOM using the Current VDOM menu, select the VDOM that you want to switch to from the drop-down list. You are automatically redirected to that VDOM.

VDOMs are enabled on the System Information Dashboard Widget.

Connecting to the CLI from the web-based manager

You can use the CLI to configure all configuration options available from the web-based manager. Some configuration options are available only from the CLI.

To connect to the CLI console, go to System > Dashboard > Status, and in the CLI Console widget select inside the window, and are automatically logged in to the CLI. For more information on using the CLI, see “Using the CLI” on page 41.

Logging out

Select the Logout icon to quit your administrative session. If you only close the browser or leave the web-based manager to surf to another web site, you remain logged in until the idle timeout (default 5 minutes) expires. To change the timeout, see “Changing the web-based manager idle timeout” on page 40.
Using the CLI

The command line interface (CLI) is an alternative configuration tool to the web-based manager.

Both can be used to configure the FortiGate unit. While the configuration, in the web-based manager, a point-and-click method, the CLI, would require typing commands, or upload batches of commands from a text file, like a configuration script.

If you are new to Fortinet products, or if you are new to the CLI, this section can help you to become familiar.

This section includes the topics:
- Connecting to the CLI
- Command syntax
- Sub-commands
- Permissions
- Tips

Connecting to the CLI

You can access the CLI in two ways:

- Locally — Connect your computer directly to the FortiGate unit’s console port.
- Through the network — Connect your computer through any network attached to one of the FortiGate unit’s network ports. The network interface must have enabled Telnet or SSH administrative access if you will connect using an SSH/Telnet client, or HTTP/HTTPS administrative access if you will connect using the CLI Console widget in the web-based manager.

Local access is required in some cases.
- If you are installing your FortiGate unit for the first time and it is not yet configured to connect to your network, unless you reconfigure your computer’s network settings for a peer connection, you may only be able to connect to the CLI using a local serial console connection. For more information, see “Connecting to the CLI” on page 62.
- Restoring the firmware utilizes a boot interrupt. Network access to the CLI is not available until after the boot process has completed, and therefore local CLI access is the only viable option.

Before you can access the CLI through the network, you usually must enable SSH and/or Telnet on the network interface through which you will access the CLI.
Connecting to the CLI using a local console

Local console connections to the CLI are formed by directly connecting your management computer or console to the FortiGate unit, using its DB-9 or RJ-45 console port. To connect to the local console you need:

- a computer with an available serial communications (COM) port
- the RJ-45-to-DB-9 or null modem cable included in your FortiGate package
- terminal emulation software such as HyperTerminal for Microsoft Windows

The following procedure describes connection using Microsoft HyperTerminal software; steps may vary with other terminal emulators.

To connect to the CLI using a local serial console connection

1. Using the null modem or RJ-45-to-DB-9 cable, connect the FortiGate unit’s console port to the serial communications (COM) port on your management computer.
2. On your management computer, start HyperTerminal.
3. For the Connection Description, enter a Name for the connection, and select OK.
4. On the Connect using drop-down list box, select the communications (COM) port on your management computer you are using to connect to the FortiGate unit.
5. Select OK.
6. Select the following Port settings and select OK.

<table>
<thead>
<tr>
<th>Bits per second</th>
<th>9600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data bits</td>
<td>8</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
</tr>
<tr>
<td>Stop bits</td>
<td>1</td>
</tr>
<tr>
<td>Flow control</td>
<td>None</td>
</tr>
</tbody>
</table>

7. Press Enter or Return on your keyboard to connect to the CLI.
8. Type a valid administrator account name (such as admin) and press Enter.
9. Type the password for that administrator account and press Enter. (In its default state, there is no password for the admin account.)

The CLI displays the following text:

Welcome!
Type ? to list available commands.

You can now enter CLI commands, including configuring access to the CLI through SSH or Telnet. For details, see “Enabling access to the CLI through the network (SSH or Telnet)” on page 42.

Enabling access to the CLI through the network (SSH or Telnet)

SSH or Telnet access to the CLI is accomplished by connecting your computer to the FortiGate unit using one of its RJ-45 network ports. You can either connect directly, using a peer connection between the two, or through any intermediary network.
You must enable SSH and/or Telnet on the network interface associated with that physical network port. If your computer is not connected directly or through a switch, you must also configure the FortiGate unit with a static route to a router that can forward packets from the FortiGate unit to your computer. You can do this using either a local console connection or the the web-based manager.

Requirements

- a computer with an available serial communications (COM) port and RJ-45 port
- terminal emulation software such as HyperTerminal for Microsoft Windows
- the RJ-45-to-DB-9 or null modem cable included in your FortiGate package
- a network cable
- prior configuration of the operating mode, network interface, and static route (for details, see)

To enable SSH or Telnet access to the CLI using a local console connection

1. Using the network cable, connect the FortiGate unit’s network port either directly to your computer’s network port, or to a network through which your computer can reach the FortiGate unit.
2. Note the number of the physical network port.
3. Using a local console connection, connect and log into the CLI. For details, see “Connecting to the CLI using a local console” on page 42.
4. Enter the following command:

   ```
   config system interface
   edit <interface_str>
   set allowaccess <protocols_list>
   next
   end
   ```

 where:
 - `<interface_str>` is the name of the network interface associated with the physical network port and containing its number, such as `port1`
 - `<protocols_list>` is the complete, space-delimited list of permitted administrative access protocols, such as `https ssh telnet`

 For example, to exclude HTTP, HTTPS, SNMP, and PING, and allow only SSH and Telnet administrative access on `port1`:

   ```
   set system interface port1 config allowaccess ssh telnet
   ```

 Telnet is not a secure access method. SSH should be used to access the CLI from the Internet or any other untrusted network.
To confirm the configuration, enter the command to display the network interface’s settings.

```
get system interface <interface_str>
```

The CLI displays the settings, including the allowed administrative access protocols, for the network interfaces.

To connect to the CLI through the network interface, see “Connecting to the CLI using SSH” on page 44 or “Connecting to the CLI using Telnet” on page 45.

Connecting to the CLI using SSH

Once the FortiGate unit is configured to accept SSH connections, you can use an SSH client on your management computer to connect to the CLI.

Secure Shell (SSH) provides both secure authentication and secure communications to the CLI. FortiGate units support 3DES and Blowfish encryption algorithms for SSH.

Before you can connect to the CLI using SSH, you must first configure a network interface to accept SSH connections. For details, see “Enabling access to the CLI through the network (SSH or Telnet)” on page 42. The following procedure uses PuTTY. Steps may vary with other SSH clients.

To connect to the CLI using SSH

1. On your management computer, start an SSH client.
2. In Host Name (or IP Address), enter the IP address of a network interface on which you have enabled SSH administrative access.
3. In Port, enter 22.
4. For the Connection type, select SSH.
5. Select Open.

The SSH client connects to the FortiGate unit.

The SSH client may display a warning if this is the first time you are connecting to the FortiGate unit and its SSH key is not yet recognized by your SSH client, or if you have previously connected to the FortiGate unit but it used a different IP address or SSH key. If your management computer is directly connected to the FortiGate unit with no network hosts between them, this is normal.

6. Click Yes to verify the fingerprint and accept the FortiGate unit’s SSH key. You will not be able to log in until you have accepted the key.

 The CLI displays a login prompt.

7. Type a valid administrator account name (such as admin) and press Enter.

8. Type the password for this administrator account and press Enter.

 If three incorrect login or password attempts occur in a row, you will be disconnected. Wait one minute, then reconnect to attempt the login again.

The FortiGate unit displays a command prompt (its host name followed by a #). You can now enter CLI commands.
Connecting to the CLI using Telnet

Once the FortiGate unit is configured to accept Telnet connections, you can use a Telnet client on your management computer to connect to the CLI.

![Warning]

Telnet is not a secure access method. SSH should be used to access the CLI from the Internet or any other untrusted network.

Before you can connect to the CLI using Telnet, you must first configure a network interface to accept SSH connections. For details, see “Enabling access to the CLI through the network (SSH or Telnet)” on page 42.

To connect to the CLI using Telnet

1. On your management computer, start a Telnet client.
2. Connect to a FortiGate network interface on which you have enabled Telnet.
3. Type a valid administrator account name (such as **admin**) and press Enter.
4. Type the password for this administrator account and press Enter.

If three incorrect login or password attempts occur in a row, you will be disconnected. Wait one minute, then reconnect to attempt the login again.

The FortiGate unit displays a command prompt (its host name followed by a #). You can now enter CLI commands.

Command syntax

When entering a command, the command line interface (CLI) requires that you use valid syntax, and conform to expected input constraints. It will reject invalid commands. Fortinet documentation uses the following conventions to describe valid command syntax:

Terminology

Each command line consists of a command word that is usually followed by words for the configuration data or other specific item that the command uses or affects:

```plaintext
get system admin
```

To describe the function of each word in the command line, especially if that nature has changed between firmware versions, Fortinet uses terms with the following definitions.
• **command** — A word that begins the command line and indicates an action that the FortiGate unit should perform on a part of the configuration or host on the network, such as `config` or `execute`. Together with other words, such as fields or values, that end when you press the Enter key, it forms a command line. Exceptions include multiline command lines, which can be entered using an escape sequence. (See “Shortcuts and key commands” on page 53.)

Valid command lines must be unambiguous if abbreviated. (See “Command abbreviation” on page 54.) Optional words or other command line permutations are indicated by syntax notation. (See “Notation” on page 47.)

• **sub-command** — A kind of command that is available only when nested within the scope of another command. After entering a command, its applicable sub-commands are available to you until you exit the scope of the command, or until you descend an additional level into another sub-command. Indentation is used to indicate levels of nested commands. (See “Indentation” on page 47.)

Not all top-level commands have sub-commands. Available sub-commands vary by their containing scope. (See “Sub-commands” on page 49.)

• **object** — A part of the configuration that contains tables and/or fields. Valid command lines must be specific enough to indicate an individual object.

• **table** — A set of fields that is one of possibly multiple similar sets which each have a name or number, such as an administrator account, policy, or network interface. These named or numbered sets are sometimes referenced by other parts of the configuration that use them. (See “Notation” on page 47.)

• **field** — The name of a setting, such as `ip` or `hostname`. Fields in some tables must be configured with values. Failure to configure a required field will result in an invalid object configuration error message, and the FortiGate unit will discard the invalid table.

• **value** — A number, letter, IP address, or other type of input that is usually your configuration setting held by a field. Some commands, however, require multiple input values which may not be named but are simply entered in sequential order in the same command line. Valid input types are indicated by constraint notation. (See “Notation” on page 47.)

• **option** — A kind of value that must be one or more words from of a fixed set of options. (See “Notation” on page 47.)
Indentation

Indentation indicates levels of nested commands, which indicate what other subcommittees are available from within the scope. For example, the `edit` sub-command is available only within a command that affects tables, and the `next` sub-command is available only from within the `edit` sub-command:

```
config system interface
   edit port1
      set status up
      next
   end
```

For information about available sub-commands, see “Sub-commands” on page 49.

Notation

Brackets, braces, and pipes are used to denote valid permutations of the syntax. Constraint notations, such as `<address_ipv4>`, indicate which data types or string patterns are acceptable value input.

Table 1: Command syntax notation

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square brackets []</td>
<td>A non-required word or series of words. For example: [verbose {1</td>
</tr>
<tr>
<td>Angle brackets (< >)</td>
<td>A word constrained by data type. The angled brackets contain a descriptive name followed by an underscore ((_)) and suffix that indicates the valid data type. For example, (<\text{retries_int}>), indicates that you should enter a number of retries, such as 5. Data types include:</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(<\text{xxx_name}>)</td>
<td>A name referring to another part of the configuration, such as policy_A.</td>
</tr>
<tr>
<td>(<\text{xxx_index}>)</td>
<td>An index number referring to another part of the configuration, such as 0 for the first static route.</td>
</tr>
<tr>
<td>(<\text{xxx_pattern}>)</td>
<td>A regular expression or word with wild cards that matches possible variations, such as *@example.com to match all email addresses ending in @example.com.</td>
</tr>
<tr>
<td>(<\text{xxx_fqdn}>)</td>
<td>A fully qualified domain name (FQDN), such as mail.example.com.</td>
</tr>
<tr>
<td>(<\text{xxx_email}>)</td>
<td>An email address, such as admin@example.com.</td>
</tr>
<tr>
<td>(<\text{xxx_ipv4}>)</td>
<td>An IPv4 address, such as 192.168.1.99.</td>
</tr>
<tr>
<td>(<\text{xxx_v4mask}>)</td>
<td>A dotted decimal IPv4 netmask, such as 255.255.255.0.</td>
</tr>
<tr>
<td>(<\text{xxx_ipv4mask}>)</td>
<td>A dotted decimal IPv4 address and netmask separated by a space, such as 192.168.1.99 255.255.255.0.</td>
</tr>
<tr>
<td>(<\text{xxx_ipv4/mask}>)</td>
<td>A dotted decimal IPv4 address and CIDR-notation netmask separated by a slash, such as 192.168.1.1/24.</td>
</tr>
<tr>
<td>(<\text{xxx_ipv4range}>)</td>
<td>A hyphen ((-))-delimited inclusive range of IPv4 addresses, such as 192.168.1.1-192.168.1.255.</td>
</tr>
<tr>
<td>(<\text{xxx_ipv6}>)</td>
<td>A colon(:)-delimited hexadecimal IPv6 address, such as 3e2e:6a8b:78a3:0d82:1725:6a2f:0370:6234.</td>
</tr>
<tr>
<td>(<\text{xxx_v6mask}>)</td>
<td>An IPv6 netmask, such as /96.</td>
</tr>
<tr>
<td>(<\text{xxx_ipv6mask}>)</td>
<td>A dotted decimal IPv6 address and netmask separated by a space.</td>
</tr>
<tr>
<td>(<\text{xxx_str}>)</td>
<td>A string of characters that is not another data type, such as P@ssw0rd. Strings containing spaces or special characters must be surrounded in quotes or use escape sequences. See “Special characters” on page 54.</td>
</tr>
<tr>
<td>(<\text{xxx_int}>)</td>
<td>An integer number that is \textbf{not} another data type, such as 15 for the number of minutes.</td>
</tr>
</tbody>
</table>

| Curly braces \(\{ \} \) | A word or series of words that is constrained to a set of options delimited by either vertical bars or spaces. You must enter at least one of the options, unless the set of options is surrounded by square brackets \([\]\). |

| Options delimited by vertical bars \(|\) | Mutually exclusive options. For example: \{enable | disable\} indicates that you must enter either enable or disable, but must not enter both. |
Sub-commands

Each command line consists of a command word that is usually followed by words for the configuration data or other specific item that the command uses or affects:

```
get system admin
```

Sub-commands are available from within the scope of some commands. When you enter a sub-command level, the command prompt changes to indicate the name of the current command scope. For example, after entering:

```
config system admin
```
the command prompt becomes:

```
(admin)#
```

Applicable sub-commands are available to you until you exit the scope of the command, or until you descend an additional level into another sub-command.

For example, the `edit` sub-command is available only within a command that affects tables; the `next` sub-command is available only from within the `edit` sub-command:

```
config system interface
   edit port1
   set status up
   next
end
```

Sub-command scope is indicated by indentation. See “Indentation” on page 47.

Available sub-commands vary by command. From a command prompt within `config`, two types of sub-commands might become available:

- commands affecting fields
- commands affecting tables
Table 2: Commands for tables

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| **clone <table>** | Clone (or make a copy of) a table from the current object. For example, in `config firewall policy`, you could enter the following command to clone security policy 27 to create security policy 30:
 clone 27 to 39
 In `config antivirus profile`, you could enter the following command to clone an antivirus profile named `av_pro_1` to create a new antivirus profile named `av_pro_2`:
 clone av_pro_1 to av_pro_2
 clone may not be available for all tables. |
| **delete <table>** | Remove a table from the current object. For example, in `config system admin`, you could delete an administrator account named `newadmin` by typing `delete newadmin` and pressing Enter. This deletes `newadmin` and all its fields, such as `newadmin`'s first-name and email-address. `delete` is only available within objects containing tables. |
| **edit <table>** | Create or edit a table in the current object. For example, in `config system admin`:
 - edit the settings for the default `admin` administrator account by typing `edit admin`.
 - add a new administrator account with the name `newadmin` and edit `newadmin`'s settings by typing `edit newadmin`.
 `edit` is an interactive sub-command: further sub-commands are available from within `edit`.
 `edit` changes the prompt to reflect the table you are currently editing.
 `edit` is only available within objects containing tables.
 In objects such as security policies, `<table>` is a sequence number. To create a new entry without the risk of overwriting an existing one, enter `edit 0`. The CLI initially confirms the creation of entry 0, but assigns the next unused number after you finish editing and enter `end`. |
| **end** | Save the changes to the current object and exit the `config` command. This returns you to the top-level command prompt. |
| **get** | List the configuration of the current object or table.
 - In objects, `get` lists the table names (if present), or fields and their values.
 - In a table, `get` lists the fields and their values.
 For more information on `get` commands, see the CLI Reference. |
Table 2: Commands for tables

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| purge | Remove all tables in the current object. For example, in config forensic user, you could type get to see the list of user names, then type purge and then y to confirm that you want to delete all users.
 purge is only available for objects containing tables.
 Caution: Back up the FortiGate unit before performing a purge.
 purge cannot be undone. To restore purged tables, the configuration must be restored from a backup.
 Caution: Do not purge system interface or system admin tables. purge does not provide default tables. This can result in being unable to connect or log in, requiring the FortiGate unit to be formatted and restored. |
| rename <table> to <table> | Rename a table. For example, in config system admin, you could rename admin3 to fwadmin by typing rename admin3 to fwadmin.
 rename is only available within objects containing tables. |
| show | Display changes to the default configuration. Changes are listed in the form of configuration commands. |

Example of table commands

From within the system admin object, you might enter:

edit admin_1

The CLI acknowledges the new table, and changes the command prompt to show that you are now within the admin_1 table:

new entry 'admin_1' added
(admin_1)#

Table 3: Commands for fields

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abort</td>
<td>Exit both the edit and/or config commands without saving the fields.</td>
</tr>
<tr>
<td>end</td>
<td>Save the changes made to the current table or object fields, and exit the config command. (To exit without saving, use abort instead.)</td>
</tr>
</tbody>
</table>
| get | List the configuration of the current object or table.
 • In objects, get lists the table names (if present), or fields and their values.
 • In a table, get lists the fields and their values. |
| next | Save the changes you have made in the current table’s fields, and exit the edit command to the object prompt. (To save and exit completely to the root prompt, use end instead.)
 next is useful when you want to create or edit several tables in the same object, without leaving and re-entering the config command each time.
 next is only available from a table prompt; it is not available from an object prompt. |
Permissions

Depending on the account that you use to log in to the FortiGate unit, you may not have complete access to all CLI commands.

Access profiles control which CLI commands an administrator account can access. Access profiles assign either read, write, or no access to each area of the FortiGate software. To view configurations, you must have read access. To make changes, you must have write access.

Unlike other administrator accounts, the administrator account named admin exists by default and cannot be deleted. The admin administrator account is similar to a root administrator account. This administrator account always has full permission to view and change all FortiGate configuration options, including viewing and changing all other administrator accounts. Its name and permissions cannot be changed. It is the only administrator account that can reset another administrator’s password without being required to enter that administrator’s existing password.

For complete access to all commands, you must log in with the administrator account named admin.

Set a strong password for the admin administrator account, and change the password regularly. By default, this administrator account has no password. Failure to maintain the password of the admin administrator account could compromise the security of your FortiGate unit.

Permissions

Depending on the account that you use to log in to the FortiGate unit, you may not have complete access to all CLI commands.

Access profiles control which CLI commands an administrator account can access. Access profiles assign either read, write, or no access to each area of the FortiGate software. To view configurations, you must have read access. To make changes, you must have write access.

Unlike other administrator accounts, the administrator account named admin exists by default and cannot be deleted. The admin administrator account is similar to a root administrator account. This administrator account always has full permission to view and change all FortiGate configuration options, including viewing and changing all other administrator accounts. Its name and permissions cannot be changed. It is the only administrator account that can reset another administrator’s password without being required to enter that administrator’s existing password.

For complete access to all commands, you must log in with the administrator account named admin.

Table 3: Commands for fields

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>set <field> <value></td>
<td>Set a field’s value. For example, in config system admin, after typing edit admin, you could type set password newpass to change the password of the admin administrator to newpass.</td>
</tr>
<tr>
<td>Note:</td>
<td>When using set to change a field containing a space-delimited list, type the whole new list. For example, set <field> <new-value> will replace the list with the <new-value> rather than appending <new-value> to the list.</td>
</tr>
<tr>
<td>show</td>
<td>Display changes to the default configuration. Changes are listed in the form of configuration commands.</td>
</tr>
<tr>
<td>unset <field></td>
<td>Reset the table or object’s fields to default values. For example, in config system admin, after typing edit admin, typing unset password resets the password of the admin administrator account to the default (in this case, no password).</td>
</tr>
</tbody>
</table>

Example of field commands

From within the admin_1 table, you might enter:

```
set password my1stExamplePassword
```

to assign the value my1stExamplePassword to the password field. You might then enter the next command to save the changes and edit the next administrator’s table.
Tips

Basic features and characteristics of the CLI environment provide support and ease of use for many CLI tasks.

Help

To display brief help during command entry, press the question mark (?) key.

- Press the question mark (?) key at the command prompt to display a list of the commands available and a description of each command.
- Type a word or part of a word, then press the question mark (?) key to display a list of valid word completions or subsequent words, and to display a description of each.

Shortcuts and key commands

<table>
<thead>
<tr>
<th>Action</th>
<th>Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>List valid word completions or subsequent words.</td>
<td>?</td>
</tr>
<tr>
<td>If multiple words could complete your entry, display all possible</td>
<td></td>
</tr>
<tr>
<td>completions with helpful descriptions of each.</td>
<td></td>
</tr>
<tr>
<td>Complete the word with the next available match.</td>
<td>Tab</td>
</tr>
<tr>
<td>Press the key multiple times to cycle through available matches.</td>
<td></td>
</tr>
<tr>
<td>Recall the previous command.</td>
<td>Up arrow, or Ctrl + P</td>
</tr>
<tr>
<td>Command memory is limited to the current session.</td>
<td></td>
</tr>
<tr>
<td>Recall the next command.</td>
<td>Down arrow, or Ctrl + N</td>
</tr>
<tr>
<td>Move the cursor left or right within the command line.</td>
<td>Left or Right arrow</td>
</tr>
<tr>
<td>Move the cursor to the beginning of the command line.</td>
<td>Ctrl + A</td>
</tr>
<tr>
<td>Move the cursor to the end of the command line.</td>
<td>Ctrl + E</td>
</tr>
<tr>
<td>Move the cursor backwards one word.</td>
<td>Ctrl + B</td>
</tr>
<tr>
<td>Move the cursor forwards one word.</td>
<td>Ctrl + F</td>
</tr>
<tr>
<td>Delete the current character.</td>
<td>Ctrl + D</td>
</tr>
<tr>
<td>Abort current interactive commands, such as when entering multiple</td>
<td>Ctrl + C</td>
</tr>
<tr>
<td>lines. If you are not currently within an interactive command such as</td>
<td></td>
</tr>
<tr>
<td>config or edit, this closes the CLI connection.</td>
<td></td>
</tr>
<tr>
<td>Continue typing a command on the next line for a multi-line command.</td>
<td>\ then Enter</td>
</tr>
<tr>
<td>For each line that you want to continue, terminate it with a backsplash</td>
<td></td>
</tr>
<tr>
<td>(). To complete the command line, terminate it by pressing the</td>
<td></td>
</tr>
<tr>
<td>spacebar and then the Enter key, without an immediately preceding</td>
<td></td>
</tr>
<tr>
<td>backslash.</td>
<td></td>
</tr>
</tbody>
</table>
Command abbreviation

You can abbreviate words in the command line to their smallest number of non-ambiguous characters.

For example, the command `get system status` could be abbreviated to `g sy st`.

Environment variables

The CLI supports the following environment variables. Variable names are case-sensitive.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$USERFROM</td>
<td>The management access type (ssh, telnet, jsconsole for the CLI Console widget in the web-based manager, and so on) and the IP address of the administrator that configured the item.</td>
</tr>
<tr>
<td>$USERNAME</td>
<td>The account name of the administrator that configured the item.</td>
</tr>
<tr>
<td>$SerialNum</td>
<td>The serial number of the FortiGate unit.</td>
</tr>
</tbody>
</table>

For example, the FortiGate unit’s host name can be set to its serial number.

```
config system global
  set hostname $SerialNum
end
```

As another example, you could log in as admin1, then configure a restricted secondary administrator account for yourself named admin2, whose first-name is admin1 to indicate that it is another of your accounts:

```
config system admin
  edit admin2
    set first-name $USERNAME
end
```

Special characters

The characters <, >, (), #, ', and “ are not permitted in most CLI fields. These characters are special characters, sometimes also called reserved characters.

You may be able to enter special character as part of a string’s value by using a special command, enclosing it in quotes, or preceding it with an escape sequence — in this case, a backslash (\) character.

Table 5: Entering special characters

<table>
<thead>
<tr>
<th>Character</th>
<th>Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Ctrl + V then ?</td>
</tr>
<tr>
<td>Tab</td>
<td>Ctrl + V then Tab</td>
</tr>
<tr>
<td>Space</td>
<td>Enclose the string in quotation marks: "Security Administrator". Enclose the string in single quotes: 'Security Administrator'. Precede the space with a backslash: Security\ Administrator.</td>
</tr>
<tr>
<td>'</td>
<td>\</td>
</tr>
</tbody>
</table>

(to be interpreted as part of a string value, not to end the string)
If you need to add configuration via CLI that requires `?` as part of config, you need to input CTRL-V first. If you enter the question mark (`?`) without first using CTRL-V, the question mark has a different meaning in CLI: it will show available command options in that section.

For example, if you enter `?` without CTRL-V:

```
edit "*.xe  
  token line: Unmatched double quote.
```

If you enter `?` with CTRL-V:

```
edit "*.xe?"  
  new entry ‘*.xe?’ added
```

Using grep to filter get and show command output

In many cases the `get` and `show` (and `diagnose`) commands may produce a large amount of output. If you are looking for specific information in a large get or show command output you can use the `grep` command to filter the output to only display what you are looking for. The `grep` command is based on the standard UNIX `grep`, used for searching text output based on regular expressions.

Information about how to use `grep` and regular expressions is available on the Internet, just to a search for `grep`. For example, see http://www.opengroup.org/onlinepubs/009695399/utilities/grep.html.

Use the following command to display the MAC address of the FortiGate unit internal interface:

```
get hardware nic internal | grep Current_HWaddr
```

```
Current_HWaddr                  00:09:0f:cb:c2:75
```

Use the following command to display all TCP sessions in the session list and include the session list line number in the output

```
get system session list | grep -n tcp
```

Use the following command to display all lines in HTTP replacement message commands that contain `URL` (upper or lower case):

```
show system replacemsg http | grep -i url
```

Language support and regular expressions

Characters such as ñ, é, symbols, and ideographs are sometimes acceptable input. Support varies by the nature of the item being configured. CLI commands, objects, field names, and options must use their exact ASCII characters, but some items with arbitrary names or values may be input using your language of choice.

For example, the host name must not contain special characters, and so the web-based manager and CLI will not accept most symbols and other non-ASCII encoded characters as input when configuring the host name. This means that languages other than English often are not supported. However, some configuration items, such as names and comments, may be able to use the language of your choice.

To use other languages in those cases, you must use the correct encoding.
Input is stored using Unicode UTF-8 encoding, but is not normalized from other encodings into UTF-8 before it is stored. If your input method encodes some characters differently than in UTF-8, your configured items may not display or operate as expected.

Regular expressions are especially impacted. Matching uses the UTF-8 character values. If you enter a regular expression using another encoding, or if an HTTP client sends a request in an encoding other than UTF-8, matches may not be what you expect.

For example, with Shift-JIS, backslashes (\) could be inadvertently interpreted as yen symbols (¥) and vice versa. A regular expression intended to match HTTP requests containing money values with a yen symbol therefore may not work if the symbol is entered using the wrong encoding.

For best results, you should:
- use UTF-8 encoding, or
- use only the characters whose numerically encoded values are the same in UTF-8, such as the US-ASCII characters that are also encoded using the same values in ISO 8859-1, Windows code page 1252, Shift-JIS and other encodings, or
- for regular expressions that must match HTTP requests, use the same encoding as your HTTP clients

HTTP clients may send requests in encodings other than UTF-8. Encodings usually vary by the client’s operating system or input language. If you cannot predict the client’s encoding, you may only be able to match any parts of the request that are in English, because regardless of the encoding, the values for English characters tend to be encoded identically. For example, English words may be legible regardless of interpreting a web page as either ISO 8859-1 or as GB2312, whereas simplified Chinese characters might only be legible if the page is interpreted as GB2312.

It configure your FortiGate unit using other encodings, you may need to switch language settings on your management computer, including for your web browser or Telnet/SSH client. For instructions on how to configure your management computer’s operating system language, locale, or input method, see its documentation.

If you choose to configure parts of the FortiGate unit using non-ASCII characters, verify that all systems interacting with the FortiGate unit also support the same encodings. You should also use the same encoding throughout the configuration if possible in order to avoid needing to switch the language settings of the web-based manager and your web browser or Telnet/SSH client while you work.

Similarly to input, your web browser or CLI client should usually interpret display output as encoded using UTF-8. If it does not, your configured items may not display correctly in the web-based manager or CLI. Exceptions include items such as regular expressions that you may have configured using other encodings in order to match the encoding of HTTP requests that the FortiGate unit receives.

To enter non-ASCII characters in the CLI Console widget
1 On your management computer, start your web browser and go to the URL for the FortiGate unit’s web-based manager.
2 Configure your web browser to interpret the page as UTF-8 encoded.
3 Log in to the FortiGate unit.
4 Go to System > Dashboard > Status.
5 In title bar of the CLI Console widget, click **Edit** (the pencil icon).

6 Enable **Use external command input box**.

7 Select **OK**.

 The **Command** field appears below the usual input and display area of the CLI Console widget.

8 In **Command**, type a command.

 Figure 6: Entering encoded characters (CLI Console widget)

 ![CLI Console widget](image)

 - **Command**: `set first-name Dóu`

9 Press Enter.

 In the display area, the CLI Console widget displays your previous command interpreted into its character code equivalent, such as:

   ```
   edit \743\601\613\743\601\652
   new entry 'Dóu' added
   ```

 and the command’s output.

To enter non-ASCII characters in a Telnet/SSH client

1 On your management computer, start your Telnet or SSH client.

2 Configure your Telnet or SSH client to send and receive characters using UTF-8 encoding.

 Support for sending and receiving international characters varies by each Telnet/SSH client. Consult the documentation for your Telnet/SSH client.

3 Log in to the FortiGate unit.

4 At the command prompt, type your command and press Enter.

 Figure 7: Entering encoded characters (PuTTY)

 ![PuTTY](image)

 You may need to surround words that use encoded characters with single quotes (`).

 Depending on your Telnet/SSH client’s support for your language’s input methods and for sending international characters, you may need to interpret them into character codes before pressing Enter.
For example, you might need to enter:
 edit '\743\601\613\743\601\652'

5 The CLI displays your previous command and its output.

Screen paging

You can configure the CLI to, when displaying multiple pages’ worth of output, pause after displaying each page’s worth of text. When the display pauses, the last line displays --More--. You can then either:

- press the spacebar to display the next page.
- type Q to truncate the output and return to the command prompt.

This may be useful when displaying lengthy output, such as the list of possible matching commands for command completion, or a long list of settings. Rather than scrolling through or possibly exceeding the buffer of your terminal emulator, you can simply display one page at a time.

To configure the CLI display to pause when the screen is full:
 config system console
 set output more
 end

Baud rate

You can change the default baud rate of the local console connection.

To change the baud rate enter the following commands:
 config system console
 set baudrate {115200 | 19200 | 38400 | 57600 | 9600}
 end

Editing the configuration file on an external host

You can edit the FortiGate configuration on an external host by first backing up the configuration file to a TFTP server. Then edit the configuration file and restore it to the FortiGate unit.

Editing the configuration on an external host can be time-saving if you have many changes to make, especially if your plain text editor provides advanced features such as batch changes.

To edit the configuration on your computer

1 Use `execute backup` to download the configuration file to a TFTP server, such as your management computer.

2 Edit the configuration file using a plain text editor that supports Unix-style line endings.

Do not edit the first line. The first line(s) of the configuration file (preceded by a # character) contains information about the firmware version and FortiGate model. If you change the model number, the FortiGate unit will reject the configuration file when you attempt to restore it.
3 Use `execute restore` to upload the modified configuration file back to the FortiGate unit.

The FortiGate unit downloads the configuration file and checks that the model information is correct. If it is, the FortiGate unit loads the configuration file and checks each command for errors. If a command is invalid, the FortiGate unit ignores the command. If the configuration file is valid, the FortiGate unit restarts and loads the new configuration.

Using Perl regular expressions

Some FortiGate features, such as spam filtering and web content filtering can use either wildcards or Perl regular expressions.

See http://perldoc.perl.org/perlretut.html for detailed information about using Perl regular expressions.

For more information on using Perl expressions see the *UTM Guide*.

Differences between regular expression and wildcard pattern matching

In Perl regular expressions, the period (`.`) character refers to any single character. It is similar to the question mark (`?`) character in wildcard pattern matching. As a result:

- `fortinet.com` not only matches `example.com` but also matches `exampleacom`, `examplebcom`, `exampleccom` and so on.

To match a special character such as the period (`.`) and the asterisk (`*`), regular expressions use the slash (`\`) escape character. For example:

- To match `example.com`, the regular expression should be `example\.com`.

In Perl regular expressions, the asterisk (`*`) means match 0 or more times of the character before it, not 0 or more times of any character. For example:

- `exam*\.com` matches `examiiii.com` but does not match `eample.com`.

To match any character 0 or more times, use `.*` where `.` means any character and the `*` means 0 or more times. For example:

- the wildcard match pattern `exam*.com` is equivalent to the regular expression `exam.*\.com`.

Word boundary

In Perl regular expressions, the pattern does not have an implicit word boundary. For example, the regular expression “test” not only matches the word “test” but also matches any word that contains the word “test” such as “atest”, “mytest”, “testimony”, “atestb”. The notation “\b” specifies the word boundary. To match exactly the word “test”, the expression should be `\btest\b`.

Case sensitivity

Regular expression pattern matching is case sensitive in the Web and Spam filters. To make a word or phrase case insensitive, use the regular expression `/i`. For example, `/bad language/i` will block all instances of “bad language” regardless of case.

Table 6: Perl regular expression examples

<table>
<thead>
<tr>
<th>Expression</th>
<th>Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>abc</code></td>
<td><code>abc</code> (that exact character sequence, but anywhere in the string)</td>
</tr>
<tr>
<td><code>^abc</code></td>
<td><code>abc</code> at the beginning of the string</td>
</tr>
<tr>
<td>Expression</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>abc$</td>
<td>abc at the end of the string</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>^abc</td>
<td>abc$</td>
</tr>
<tr>
<td>ab[2,4]c</td>
<td>an a followed by two, three or four b’s followed by a c</td>
</tr>
<tr>
<td>ab[2,]c</td>
<td>an a followed by at least two b’s followed by a c</td>
</tr>
<tr>
<td>ab*c</td>
<td>an a followed by any number (zero or more) of b’s followed by a c</td>
</tr>
<tr>
<td>ab+c</td>
<td>an a followed by one or more b’s followed by a c</td>
</tr>
<tr>
<td>ab?c</td>
<td>an a followed by an optional b followed by a c; that is, either abc or ac</td>
</tr>
<tr>
<td>a.c</td>
<td>an a followed by any single character (not newline) followed by a c</td>
</tr>
<tr>
<td>a\c</td>
<td>a.c exactly</td>
</tr>
<tr>
<td>[abc]</td>
<td>any one of a, b and c</td>
</tr>
<tr>
<td>[Aa]bc</td>
<td>either of Abc and abc</td>
</tr>
<tr>
<td>[abc]+</td>
<td>any (nonempty) string of a’s, b’s and c’s (such as a, abba, acbabcaca)</td>
</tr>
<tr>
<td>[^abc]+</td>
<td>any (nonempty) string which does not contain any of a, b and c (such as defg)</td>
</tr>
<tr>
<td>\d\d</td>
<td>any two decimal digits, such as 42; same as \d{2}</td>
</tr>
<tr>
<td>/i</td>
<td>makes the pattern case insensitive. For example, /bad language/i blocks</td>
</tr>
<tr>
<td></td>
<td>any instance of “bad language” regardless of case.</td>
</tr>
<tr>
<td>\w+</td>
<td>a “word”: a nonempty sequence of alphanumeric characters and low lines</td>
</tr>
<tr>
<td></td>
<td>(underscores), such as foo and 12bar8 and foo_1</td>
</tr>
<tr>
<td>100s*mk</td>
<td>the strings 100 and mk optionally separated by any amount of white space</td>
</tr>
<tr>
<td></td>
<td>(spaces, tabs, newlines)</td>
</tr>
<tr>
<td>abc\b</td>
<td>abc when followed by a word boundary (e.g. in abcl but not in abcd)</td>
</tr>
<tr>
<td>perl\B</td>
<td>perl when not followed by a word boundary (e.g. in perlert but not in</td>
</tr>
<tr>
<td></td>
<td>perl stuff)</td>
</tr>
<tr>
<td>\x</td>
<td>tells the regular expression parser to ignore white space that is</td>
</tr>
<tr>
<td></td>
<td>neither backslished nor within a character class. You can use this to</td>
</tr>
<tr>
<td></td>
<td>break up your regular expression into (slightly) more readable parts.</td>
</tr>
</tbody>
</table>
Basic setup

The FortiGate unit requires some basic configuration to add it to your network. These basic steps include assigning IP addresses, adding routing and security policies. Until the administrator completes these steps inter-network and internet traffic will not flow through the device.

There are two methods of configuring the FortiGate unit: either the web-based manager or the command line interface (CLI). This chapter will step through both methods to complete the basic configurations to put the device on your network. Use whichever you are most comfortable with.

This chapter also provides guidelines for password and administrator best practices as well as how to upgrade the firmware.

This section includes the topics:
- Connecting to the FortiGate unit
- Setup Wizard
- FortiExplorer
- Configuring NAT mode
- Configuring transparent mode
- Verifying the configuration
- Additional configuration
- Passwords
- Administrators
- Backing up the configuration
- Firmware
- Controlled upgrade

Connecting to the FortiGate unit

To configure, maintain and administer the FortiGate unit, you need to connect to it from a management computer. There are two ways to do this:
- using the web-based manager: a GUI interface that you connect to using a current web browser such as Firefox or Internet Explorer.
- using the command line interface (CLI): a command line interface similar to DOS or UNIX commands that you connect to using SSH or a Telnet terminal.

Connecting to the web-based manager

To connect to the web-based manager, you require:
- a computer with an Ethernet connection
- Microsoft Internet Explorer version 6.0 or higher or any recent version of a common web browser
- an Ethernet cable.
To connect to the web-based manager

1. Set the IP address of the management computer to the static IP address 192.168.1.2 with a netmask of 255.255.255.0.

2. Using the Ethernet cable, connect the internal or port 1 interface of the FortiGate unit to the computer Ethernet connection.

3. Start your browser and enter the address https://192.168.1.99. (remember to include the "s" in https:/

To support a secure HTTPS authentication method, the FortiGate unit ships with a self-signed security certificate, which is offered to remote clients whenever they initiate a HTTPS connection to the FortiGate unit. When you connect, the FortiGate unit displays two security warnings in a browser.

The first warning prompts you to accept and optionally install the FortiGate unit’s self-signed security certificate. If you do not accept the certificate, the FortiGate unit refuses the connection. If you accept the certificate, the FortiGate login page appears. The credentials entered are encrypted before they are sent to the FortiGate unit. If you choose to accept the certificate permanently, the warning is not displayed again.

Just before the FortiGate login page is displayed, a second warning informs you that the FortiGate certificate distinguished name differs from the original request. This warning occurs because the FortiGate unit redirects the connection. This is an informational message. Select OK to continue logging in.

4. Type admin in the Name field and select Login.

Connecting to the CLI

The command line interface (CLI) is an alternative method of configuring the FortiGate unit. The CLI compliments the web-based manager in that it not only has the same configuration options, but additional settings not available through the web-based manager.

If you are new to FortiOS or a command line interface configuration tool, see “Using the CLI” on page 41 for an overview of the CLI, how to connect to it, and how to use it.

Setup Wizard

For the FortiGate-50B, 60C and 80C series, FortiOS includes a wizard to step you through the basic configuration of the FortiGate unit. The Setup Wizard will configure your FortiGate unit from factory default settings. If you set your management computer to the default IP address of the FortiGate unit, 192.168.1.99, and connect it to the FortiGate unit, when the device starts it will automatically launch the wizard.

A Wizard button also appears in the web-based manager. Use this button to update the configuration if required. Because the wizard configures from a default setting, it will reset the FortiGate unit to its factory defaults before beginning. The wizard will prompt you to save the existing configuration before proceeding.

FortiExplorer

FortiExplorer is a software tool for easy configuration of a new FortiGate unit, or simple updates to existing FortiGate units on a Microsoft Windows or Mac OS computer. FortiExplorer is included with the FortiGate-60C series of devices, as well as is available from the Fortinet web site.
FortiExplorer uses a USB connection to the FortiGate unit, rather than using a console cable or Ethernet connection. The USB connection does not replace the other options, but adds another option when configuring the FortiGate unit.

Installation

FortiExplorer is available for Microsoft Windows XP, Windows 7, and Mac OS X. The software is available on the Tools and Documentation CD included with your FortiGate unit, or is available for download from the Fortinet web site at http://www.fortinet.com/resource_center/product_demos.html.

Microsoft Windows install

To install FortiClient on Windows

1. Extract the ZIP (if downloaded) and double-click the .MSI or .EXE file and follow the instructions on screen. If loading from the CD, select the icon for your version of Windows.
2. Connect the USB cable to the FortiGate unit and the management computer.
3. For Windows XP, the New Hardware Wizard opens when the cables are connected. Select the option No, not at this time and select Next.
4. Select Install the hardware automatically and select Next.
5. After a few moments, FortiExplorer will launch.

Apple Macintosh OS X

To install FortiClient on Mac OS X

1. Double-click the .dmg file and drag the FortiExplorer program file into the Applications folder.
2. Connect the USB cable to the FortiGate unit and the management computer.
3. Double-click the FortiExplorer icon to launch the application.

Configuration options

With FortiExplorer, you are provided a number of options on how to configure the FortiGate unit, depending on your level of comfort with various interfaces. The options available are:

- the configuration wizard, which guides you through the basic configuration of IP addresses, passwords and security policies
- the web-based manager, which when chosen, appears within the FortiExplorer window.
- the command line interface (CLI), which when chosen, appears within the FortiExplorer window.

Updating FortiExplorer and firmware

FortiExplorer may be updated from time to time to update and add features, or correct other issues. To ensure you have the most recent FortiExplorer, use the Check for Updates option in FortiExplorer.

To check for updates on Microsoft Windows XP or Windows 7, go to Help > Check for Updates.

To check for updates on Apple Macintosh OS X, go to FortiExplorer > Check for Updates.
You can also use FortiExplorer to check for new firmware for a FortiGate unit. To check for new firmware, select the FortiGate unit from the Device list and select Check for Update.

Configuring NAT mode

When configuring NAT mode, you need to define interface addresses and default routes, and simple security policies. You can use the web-based manager or the CLI to configure the FortiGate unit in NAT mode.

Configure the interfaces

When shipped, the FortiGate unit has a default address of 192.168.1.99 and a netmask of 255.255.255.0 for either the Port 1 or Internal interface. You need to configure this and other ports for use on your network.

If you change the IP address of the interface you are connecting to, you must connect through a web browser again using the new address. Browse to https:// followed by the new IP address of the interface. If the new IP address of the interface is on a different subnet, you may have to change the IP address of your computer to the same subnet.

To configure interface for manual addressing - web-based manager

1. Go to System > Network > Interface.
2. Select an interface and select Edit.
3. Enter the IP address and netmask for the interface.
4. Select OK.

To configure an interface for manual addressing - CLI

```
config system interface
  edit <interface_name>
    set mode static
    set ip <interface_ipv4mask>
  end
```

To configure DHCP addressing - web-based manager

1. Go to System > Network > Interface.
2. Select the Edit icon for an interface.
3. Select DHCP and complete the following:

<table>
<thead>
<tr>
<th>Distance</th>
<th>Enter the administrative distance, between 1 and 255 for the default gateway retrieved from the DHCP server. The administrative distance specifies the relative priority of a route when there are multiple routes to the same destination. A lower administrative distance indicates a more preferred route.</th>
</tr>
</thead>
</table>
To configure DHCP addressing - CLI

```
config system interface
  edit <interface_name>
    set mode dhcp
    set distance <integer>
    set defaultgw enable
  end
```

To configure PPPoE addressing - web-based manager

1. Go to System > Network > Interface.
2. Select an interface and select Edit.
3. Select PPPoE, and complete the following:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>Enter the username for the PPPoE server. This may have been provided by your Internet Service Provider.</td>
</tr>
<tr>
<td>Password</td>
<td>Enter the password for the PPPoE server for the above username.</td>
</tr>
<tr>
<td>Unnumbered IP</td>
<td>Specify the IP address for the interface. If your Internet Service Provider has assigned you a block of IP addresses, use one of these IP addresses. Alternatively, you can use, or borrow, the IP address of a configured interface on the router. You may need to do this to minimize the number of unique IP addresses within your network. If you are borrowing an IP address, remember the interface must be enabled, and the Ethernet cable connected to the FortiGate unit.</td>
</tr>
<tr>
<td>Initial Disc Timeout</td>
<td>Initial discovery timeout in seconds. The amount of time to wait before starting to retry a PPPoE discovery. To disable the discovery timeout, set the value to 0.</td>
</tr>
<tr>
<td>Initial PADT Timeout</td>
<td>Initial PPPoE Active Discovery Terminate (PADT) timeout in seconds. Use this timeout to shut down the PPPoE session if it is idle for this number of seconds. Your Internet Service Provider must support PADT. To disable the PADT timeout, set the value to 0.</td>
</tr>
</tbody>
</table>
To configure PPPoE addressing - CLI

```plaintext
config system interface
  edit <interface_name>
    set mode pppoe
    set username <pppoe_username>
    set password <pppoe_password>
    set ipunnumbered <unnumbered_ipv4>
    set disc-retry-timeout <pppoe_retry>
    set padt-retry-timeout <pppoe_retry>
    set distance <integer>
    set defaultgw enable
  end
```

Configure a DNS

A DNS server is a public service that converts symbolic node names to IP addresses. A domain name server (DNS) implements the protocol. In simple terms, it acts as a phone book for the Internet. A DNS server matches domain names with the computer IP address. This enables you to use readable locations, such as fortinet.com when browsing the Internet.

The FortiGate unit includes default DNS server addresses. However, these should be changed to those provided by your Internet Service Provider. The defaults are DNS proxies and are not as reliable as those from your ISP.

To configure DNS settings - web-based manager

1. Go to System > Network > DNS.
2. Enter the IP address of the primary DNS server.
3. Enter the IP address of the secondary DNS server.
4. Select Apply.

💡 For more information on DNS servers see “DNS services” on page 274.
To configure DNS server settings - CLI

```
config system dns
    set primary <dns_ipv4>
    set secondary <dns_ipv4>
end
```

Add a default route and gateway

A route provides the FortiGate unit with the information it needs to forward a packet to a particular destination. A static route causes packets to be forwarded to a destination other than the default gateway. You define static routes manually. Static routes control traffic exiting the FortiGate unit. You can specify through which interface the packet will leave and to which device the packet should be routed.

In the factory default configuration, entry number 1 in the Static Route list is associated with a destination address of 0.0.0.0/0.0.0.0, which means any/all destinations. This route is called the "static default route". If no other routes are present in the routing table and a packet needs to be forwarded beyond the FortiGate unit, the factory configured static default route causes the FortiGate unit to forward the packet to the default gateway.

For an initial configuration, you must edit the static default route to specify a different default gateway for the FortiGate unit. This will enable the flow of data through the unit.

To modify the default gateway - web-based manager

1. Go to Router > Static > Static Route.
2. Select the default route and select Edit.
3. In the Gateway field, type the IP address of the next-hop router where outbound traffic is directed.
4. If the FortiGate unit reaches the next-hop router through a different interface (compared to the interface that is currently selected in Device, select the name of the interface from the Device drop-down list.
5. Select OK.

To modify the default gateway - CLI

```
config router static
    edit <sequence_num>
        set gateway <gateway_address_ipv4>
        set device <interface_name>
    end
```

Add security policies

Security policies enable traffic to flow through the FortiGate interfaces. Security policies define how the FortiGate unit processes the packets in a communication session. For the initial installation, a single security policy that enables all traffic to flow through will enable you to verify your configuration is working. On lower-end units such a default security policy is already in place. For the high-end FortiGate units, you need to add a security policy.

The following steps add two policies that allows all traffic through the FortiGate unit, to enable you to continue testing the configuration on the network. These steps provide a quick way to get traffic flowing through the FortiGate unit. It is a very broad policy and not recommended to keep on the system once initial setup and testing are complete. You will want to add more restrictive security policies to provide better network protection. For more information on security policies, see the FortiGate Fundamentals.
To add an outgoing traffic security policy - web-based manager
1. Go to Policy > Policy > Policy.
2. Select Create New.
3. Set the following and select OK.

<table>
<thead>
<tr>
<th>Source Interface/Zone</th>
<th>Source Address</th>
<th>Destination Interface/Zone</th>
<th>Destination Address</th>
<th>Schedule</th>
<th>Service</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select the port connected to the network.</td>
<td>All</td>
<td>Select the port connected to the Internet.</td>
<td>All</td>
<td>always</td>
<td>Any</td>
<td>Accept</td>
</tr>
</tbody>
</table>

To add an outgoing traffic security policy - CLI
```
cfg firewall policy
edit <interface_name>
    set srcintf <name_str>
    set srcaddr <name_str>
    set dstintf <name_str>
    set dstaddr <name_str>
    set schedule always
    set service ANY
    set action accept
end
```

To add an incoming traffic security policy - web-based manager
1. Go to Policy > Policy > Policy.
2. Select Create New.
3. Set the following and select OK.

<table>
<thead>
<tr>
<th>Source Interface</th>
<th>Source Address</th>
<th>Destination Interface</th>
<th>Destination Address</th>
<th>Schedule</th>
<th>Service</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select the port connected to the Internet.</td>
<td>All</td>
<td>Select the port connected to the network.</td>
<td>All</td>
<td>always</td>
<td>Any</td>
<td>Accept</td>
</tr>
</tbody>
</table>

To add an incoming traffic security policy - CLI
```
cfg firewall policy
edit <interface_name>
    set srcintf <name_str>
    set srcaddr <name_str>
```

Source Interface/Zone
Select the port connected to the network.
Source Address
All
Destination Interface/Zone
Select the port connected to the Internet.
Destination Address
All
Schedule
always
Service
Any
Action
Accept
To create an incoming traffic security policy, you use the same commands with the addresses reversed. Security policy configuration is the same in NAT and transparent mode.

These policies allow all traffic through. No UTM profiles have been configured or applied. Ensure you create additional security policies to accommodate your network requirements.

Configuring transparent mode

You can then configure the management IP address, default routes, and security policies. You can use the web-based manager or the CLI to configure the FortiGate unit in transparent mode.

Switching to transparent mode

First need to switch to transparent mode.

To switch to transparent mode - web-based manager

1. Go to System > Status.
2. Under System Information, select Change beside the Operation Mode.
3. Select Transparent.
4. Enter the Management IP/Netmask address and the Default Gateway address.
 - The default gateway IP address is required to tell the FortiGate unit where to send network traffic to other networks.
5. Select Apply.

To switch to transparent mode

```
config system settings
set opmode transparent
set manageip <manage_ipv4>
set gateway <gw_ipv4>
end
```

Configure a DNS

A DNS server is a service that converts symbolic node names to IP addresses. A domain name server (DNS) implements the protocol. In simple terms, it acts as a phone book for the Internet. A DNS server matches domain names with the computer IP address. This enables you to use readable locations, such as fortinet.com when browsing the Internet. DNS server IP addresses are typically provided by your Internet Service Provider. For further DNS configuration and concepts, see “DNS services” on page 274.
To configure DNS server settings - web-based manager
1. Go to System > Network > DNS.
2. Enter the IP address of the primary DNS server.
3. Enter the IP address of the secondary DNS server.
4. Select Apply.

To configure DNS server settings - CLI
```
config system dns
    set primary <dns_ipv4>
    set secondary <dns_ipv4>
end
```

Add security policies
Security policies enable traffic to flow through the FortiGate interfaces. Security policies define the FortiGate unit process the packets in a communication session. You can configure the security policies to allow only specific traffic, users and specific times when traffic is allowed.

For the initial installation, a single security policy that enables all traffic through will enable you to verify your configuration is working. On lower-end units such a default security policy is already in place. For the higher end FortiGate units, you will need to add a security policy.

The following steps add two policies that allows all traffic through the FortiGate unit, to enable you to continue testing the configuration on the network.

These steps provide a quick way to get traffic flowing through the FortiGate unit. It is a very broad policy and not recommended to keep on the system once initial setup and testing are complete. You will want to add more restrictive security policies to provide better network protection. For more information on security policies, see the FortiGate Fundamentals.

To add an outgoing traffic security policy - web-based manager
1. Go to Policy > Policy > Policy.
2. Select Create New.
3. Set the following and select OK.

<table>
<thead>
<tr>
<th>Source Interface/Zone</th>
<th>Select the port connected to the network.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>All</td>
</tr>
<tr>
<td>Destination Interface/Zone</td>
<td>Select the port connected to the Internet.</td>
</tr>
<tr>
<td>Destination Address</td>
<td>All</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>Any</td>
</tr>
<tr>
<td>Action</td>
<td>Accept</td>
</tr>
</tbody>
</table>

To add an outgoing traffic security policy - CLI
```
config firewall policy
    edit <policy_number>
        set srcintf <name_str>
```

System Administration for FortiOS 4.0 MR3
01-434-142188-20120111
http://docs.fortinet.com/
set srcaddr <name_str>
set dstintf <name_str>
set dstaddr <name_str>
set schedule always
set service ANY
set action accept
end

To add an incoming traffic security policy - web-based manager
1. Go to Policy > Policy > Policy.
2. Select Create New.
3. Set the following and select OK.

<table>
<thead>
<tr>
<th>Source Interface</th>
<th>Select the port connected to the Internet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>All</td>
</tr>
<tr>
<td>Destination Interface</td>
<td>Select the port connected to the network.</td>
</tr>
<tr>
<td>Destination Address</td>
<td>All</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>Any</td>
</tr>
<tr>
<td>Action</td>
<td>Accept</td>
</tr>
</tbody>
</table>

To add an incoming traffic security policy - CLI

```
config firewall policy
edit <policy_number>
    set srcintf <name_str>
    set srcaddr <name_str>
    set dstintf <name_str>
    set dstaddr <name_str>
    set schedule always
    set service ANY
    set action accept
end
```

To create an incoming traffic security policy, you use the same commands with the addresses reversed.

Security policy configuration is the same in NAT mode and transparent mode.
These policies allow all traffic through. No UTM profiles have been configured or applied. Ensure you create additional security policies to accommodate your network requirements.

Verifying the configuration

Your FortiGate unit is now configured and connected to the network. To verify that the FortiGate unit is connected and configured correctly, use your web browser to browse a web site, or use your email client to send and receive email.

If you cannot browse to the web site or retrieve/send email from your account, review the previous steps to ensure all information was entered correctly and try again.
Remember to verify the security policies. The security policies control the flow of information through the FortiGate unit. If the policies are not set up correctly, or are too restrictive, they can prohibit network traffic flow.

Additional configuration

Once the FortiGate unit is connected and traffic can pass through, several more configuration options are available. While not mandatory, they will help to ensure better control with the firewall.

Setting the time and date

For effective scheduling and logging, the FortiGate system date and time should be accurate. You can either manually set the system date and time or configure the FortiGate unit to automatically keep its time correct by synchronizing with a Network Time Protocol (NTP) server.

To set the date and time - web-based manager

1. Go to **System > Dashboard > Status**.
2. Under **System Information > System Time**, select **Change**.
3. Select your **Time Zone**.
4. Select **Set Time** and set the FortiGate system date and time.
5. Select **OK**.

Set the time and date - CLI

```
config system global
    set timezone <zone_value>
end
execute date [<date_str>]
execute time [<time_str>]
```

By default, FortiOS has the daylight savings time configuration enabled. The system time must be manually adjusted after daylight saving time ends. To disable DST, in the CLI enter the commands:

```
config system global
    set dst disable
end
```

Using the NTP Server

The Network Time Protocol enables you to keep the FortiGate time in sync with other network systems. By enabling NTP on the FortiGate unit, FortiOS will check with the NTP server you select at the configured intervals. This will also ensure that logs and other time-sensitive settings on the FortiGate unit are correct.

The FortiGate unit maintains its internal clock using the built-in battery. At startup, the time reported by the FortiGate unit will indicate the hardware clock time, which may not be accurate. When using NTP, the system time might change after the FortiGate has successfully obtained the time from a configured NTP server.
For the NTP server, you can identify a specific port/IP address for this self-originating traffic. The configuration is performed in the CLI with the command set `source-ip`. For example, to set the source IP of NTP to be on the DMZ1 port with an IP of 192.168.4.5, the commands are:

```
config system ntp
  set ntpsyn enable
  set syncinterval 5
  set source-ip 192.168.4.5
end
```

Configuring FortiGuard

The FDN is a world-wide network of FortiGuard Distribution Servers (FDS). When the FortiGate unit connects to the FDN, it connects to the nearest FDS. To do this, all FortiGate units are programmed with a list of FDS addresses sorted by nearest time zone according to the time zone configured for the FortiGate unit.

Before you can begin receiving updates, you must register your FortiGate unit from the Fortinet web page. After which, you need to configure the FortiGate unit to connect to the FortiGuard Distribution Network (FDN) to update the antivirus, antispam and IPS attack definitions.

Updating antivirus and IPS signatures

After you have registered your FortiGate unit, you can update antivirus and IPS signatures. The FortiGuard Center enables you to receive push updates, allow push update to a specific IP address, and schedule updates for daily, weekly, or hourly intervals.

To update antivirus definitions and IPS signatures

1. Go to `System > Config > FortiGuard`.
2. Select the expand arrow for `AntiVirus and IPS Options` to expand the options.
3. Select `Update Now` to update the antivirus definitions.

 If the connection to the FDN is successful, the web-based manager displays a message similar to the following:

 Your update request has been sent. Your database will be updated in a few minutes. Please check your update page for the status of the update.

 After a few minutes, if an update is available, the FortiGuard Center Services information on the Dashboard lists new version information for antivirus definitions. The System Status page also displays new dates and version numbers for the antivirus definitions. Messages are recorded to the event log indicating whether or not the update was successful or not.

 Updating antivirus definitions can cause a very short disruption in traffic currently being scanned while the FortiGate unit applies the new signature database. Schedule updates when traffic is light, for example overnight, to minimize any disruption.
Passwords

The FortiGate unit ships with a default empty password, that is, there is no password. You will want to apply a password to prevent anyone from logging into the FortiGate unit and changing configuration options.

To change the administrator password - web-based manager

1. Go to System > Admin > Administrators.
2. Select the admin account and select Change Password.
3. Enter a new password and select OK.

Set the admin password - CLI

```plaintext
config system admin
  edit admin
    set password <admin_password>
  end
```

Password considerations

When changing the password, consider the following to ensure better security.

- Do not make passwords that are obvious, such as the company name, administrator names or other obvious word or phrase.
- Use numbers in place of letters, for example, passw0rd. Alternatively, spell words with extra letters, for example, password.
- Administrative passwords can be up to 256 characters.
- Include a mixture of letters, numbers, and upper and lower case.
- Use multiple words together, or possibly even a sentence, for example keytothehighway, or with a combination of the above suggestions.
- Use a password generator.
- Change the password regularly and always use a code unique (not a variation of the existing password by adding a “1” to it, for example password, password1).
- Write the password down and store it in a safe place away from the management computer, in case you forget it.
- Alternatively, ensure at least two people know the password in the event that one person becomes ill, is away on vacation or leaves the company. Alternatively have two different admin logins.

Password policy

The FortiGate unit includes the ability to enforce a password policy for administrator login. With the policy, you can enforce regular changes and specific criteria for a password including:

- minimum length between 8 and 32 characters.
- if the password must contain uppercase (A, B, C) and/or lowercase (a, b, c) characters.
- if the password must contain numbers (1, 2, 3).
- if the password must contain non-alphanumeric characters (!, @, #, $, %, ^, &, *, ().
- where the password applies (admin or IPsec or both).
Basic setup Administrators

- the duration of the password before a new one must be specified.

To apply a password policy - web-based manager
1. Go to System > Admin > Settings.
2. Select Enable and configure the settings as required.

To apply a password policy - CLI
```
config system password-policy
set status enable
```
Configure the other settings as required.

Forgotten password?

It happens that the administrator of the FortiGate unit leaves the company and does not have the opportunity to provide the administrative password or forgets. Or you simply forgot the password.

In the event you lose or forget the password, you need to contact Customer Support for the steps required to reset the password. For information on contacting Customer Support, see the Support web site at https://support.fortinet.com.

Administrators

By default, the FortiGate unit has a super administrator called “admin”. This user login cannot be deleted and always has ultimate access over the FortiGate unit. As well you can add administrators for various functions and VDOMs. Each one can have their own username and password and set of access privileges. There are two levels of administrator accounts; regular administrators and system administrators. Regular administrators are administrators with any admin profile other than the default super_admin. System administrators are administrators that are assigned the super_admin profile.

Administrator configuration

To create a new administrator account, go to System Admin > Administrators and select Create New.

You need to use the default "admin" account, an account with the super_admin admin profile, or an administrator with read-write access control to add new administrator accounts and control their permission levels. If you log in with an administrator account that does not have the super_admin admin profile, the administrators list will show only the administrators for the current virtual domain.

Regular (password) authentication for administrators

You can use a password stored on the local FortiGate unit to authenticate an administrator. When you select Regular for Type, you will see Local as the entry in the Type column when you view the list of administrators.

The name of the administrator should not contain the characters < > () # " " . Using these characters in the administrator account name can result in a cross site scripting (XSS) vulnerability.
If you forget or lose an administrator account password and cannot log in to your FortiGate unit, see the Fortinet Knowledge Base article Recovering a lost FortiGate administrator account passwords.

Management access

Management access defines how administrators are able to log on to the FortiGate unit to perform management tasks such as configuration and maintenance. Methods of access can include local access through the console connection, or remote access over a network or modem interface using various protocols including Telnet and HTTPS.

You can configure management access on any interface in your VDOM. In NAT mode, the interface IP address is used for management access. In transparent mode, you configure a single management IP address that applies to all interfaces in your VDOM that permit management access. The FortiGate unit also uses this IP address to connect to the FDN for virus and attack updates.

The system administrator (admin) can access all VDOMs, and create regular administrator accounts. A regular administrator account can access only the VDOM to which it belongs. The management computer must connect to an interface in that VDOM. It does not matter to which VDOM the interface belongs. In both cases, the management computer must connect to an interface that permits management access and its IP address must be on the same network. Management access can be via HTTP, HTTPS, telnet, or SSH sessions if those services are enabled on the interface. HTTPS and SSH are preferred as they are more secure.

You can allow remote administration of the FortiGate unit. However, allowing remote administration from the Internet could compromise the security of the FortiGate unit. You should avoid this unless it is required for your configuration. To improve the security of a FortiGate unit that allows remote administration from the Internet:

- Use secure administrative user passwords.
- Change these passwords regularly.
- Enable two-factor authentication for administrators.
- Enable secure administrative access to this interface using only HTTPS or SSH.
- Use Trusted Hosts to limit where the remote access can originate from.
- Do not change the system idle timeout from the default value of 5 minutes.

Tightening Security

One point of security breach is at the management computer. Administrators who leave their workstations for a prolonged amount of time while staying logged into the web-based manager or CLI (whether on purpose or not), leave the firewall open to malicious intent.

Passwords

Do not make passwords that are obvious, such as the company name, administrator names or other obvious word or phrase. Administrative passwords can be up to 256 characters. For more information on passwords, see “Passwords” on page 74.
Preventing unwanted login attempts

Setting trusted hosts for an administrators increases limiting what computers an administrator can log in from. When you identify a trusted host, the FortiGate unit will only accept the administrator's login from the configured IP address. Any attempt to log in with the same credentials from any other IP address will be dropped. To ensure the administrator has access from different locations, you can enter up to ten IP addresses. Ideally, this should be kept to a minimum. For higher security, use an IP address with a net mask of 255.255.255.255, and enter an IP address (non-zero) in each of the three default trusted host fields.

Trusted hosts are configured when adding a new administrator by going to System > Admin > Administrators in the web-based manager or `config system admin` in the CLI.

The trusted hosts apply to the web-based manager, ping, snmp and the CLI when accessed through Telnet or SSH. CLI access through the console port is not affected. Also ensure all entries contain actual IP addresses, not the default 0.0.0.0.

Disable admin services

On untrusted networks, turn off the weak administrative services such as TLENET and HTTP. With these services, passwords are passed in the clear, not encrypted. These services can be disabled by going to System > Network > Interface and deselecting the required check boxes.

SSH login time out

When logging into the console using SSH, the default time of inactivity is 120 seconds (2 minutes) to successfully log into the FortiGate unit. To enhance security, you can configure the time to be shorter. Using the CLI, you can change the length of time the command prompt remains idle before the FortiGate unit will log the administrator out. The range can be between 10 and 3600 seconds. To set the logout time enter the following commands:

```
config system global
set admin-ssh-grace-time <number_of_seconds>
end
```

Administrator lockout

By default, the FortiGate unit includes set number of password retries. That is, the administrator has a maximum of three attempts to log into their account before they are locked out for a set amount of time. The number of attempts can be set to an alternate value.

As well, the default wait time before the administrator can try to enter a password again is 60 seconds. You can also change this to further sway would-be hackers. Both settings are configured only in the CLI.

To configure the lockout options use the following commands:

```
config system global
set admin-lockout-threshold <failed_attempts>
set admin-lockout-duration <seconds>
end
```

For example, to set the lockout threshold to one attempt and a five minute duration before the administrator can try again to log in enter the commands"
Idle time-out

To avoid the possibility of an administrator walking away from the management computer and leaving it exposed to unauthorized personnel, you can add an idle time-out. That is, if the web-based manager is not used for a specified amount of time, the FortiGate unit will automatically log the user out. To continue their work, they must log in to the device again.

The time-out can be set as high as 480 minutes, or eight hours, although this is not recommended.

To set the idle time out - web-based manager
1. Go to System > Admin > Settings.
2. In the Administration Settings, enter the amount of time the Administrator login can remain idle in the Idle Timeout field.
3. Select Apply.

To set the idle time out - CLI
```
config system global
  set admin-timeout <minutes>
end
```

Administrative ports

You can set the web-based manager access as through HTTP, HTTPS, SSH and Telnet. In these cases, the default ports for these protocols are 80, 443, 22 and 23 respectively.

You can change the ports used for network administration to a different, unused port to further limit potential hackers.

To change the administrative ports - web-based manager
1. Go to System > Admin > Settings.
2. In the Web Administration Ports section, change the port numbers.
3. Select Apply

To change the administrative ports - CLI
```
config system global
  set admin-port <http_port_number>
  set admin-sport <https_port_number>
  set admin-ssh-port <ssh_port_number>
  set admin-telnet-port <telnet_port_number>
end
```

Ensure the port you select is not a port you will be using for other applications. For a list of assigned port numbers see http://www.iana.org/assignments/port-numbers.
When logging into the FortiGate unit, by default FortiOS will automatically use the default ports. That is, when logging into the FortiGate IP address, you only need to enter the address, for example:

https://192.168.1.1

When you change the administrative port number, the port number must be added to the url. For example, if the port number for HTTPS access is 2112, the administrator must enter the following address:

https://192.168.1.1:2112

Disable interfaces

If any of the interfaces on the FortiGate unit are not being used, disable traffic on that interface. This avoids someone plugging in network cables and potentially causing network bypass or loop issues.

To disable an interface - web-based manager

1. Go to System > Network > Interface.
2. Select the interface from the list and select Edit.
3. For Administrative Access, select Down.
4. Select OK.

To disable an interface - CLI

config system interface
edit <interface_name>
set status down
end

Change the admin username

The default super administrator user name, admin, is a very standard default administrator name. Leaving this as is, is one half of the key to the FortiGate unit being compromised. The name can be changed.

To do this, you need to create another super user with full access and log in as that user. Then go to System > Admin > Administrator, select the admin account and select Edit to change the user name.

Segregated administrative roles

To minimize the affect of an administrator doing complete harm to the FortiGate configuration and possibly jeopardize the network, create individual administrative roles where none of the administrators have super-admin permissions. For example, and admin solely to create security policies, another for users and groups, another for VPN and so on.

RADIUS authentication for administrators

Remote Authentication and Dial-in User Service (RADIUS) servers provide authentication, authorization, and accounting functions. FortiGate units use the authentication and authorization functions of the RADIUS server. To use the RADIUS server for authentication, you must configure the server before you configure the FortiGate users or user groups that will need it.
If you have configured RADIUS support and a user is required to authenticate using a RADIUS server, the FortiGate unit sends the user’s credentials to the RADIUS server for authentication. If the RADIUS server can authenticate the user, the user is successfully authenticated with the FortiGate unit. If the RADIUS server cannot authenticate the user, the FortiGate unit refuses the connection.

If you want to use a RADIUS server to authenticate administrators in your VDOM, you must configure the authentication before you create the administrator accounts. To do this you need to:

- configure the FortiGate unit to access the RADIUS server
- create the RADIUS user group
- configure an administrator to authenticate with a RADIUS server.

Configuring LDAP authentication for administrators

Lightweight Directory Access Protocol (LDAP) is an Internet protocol used to maintain authentication data that may include departments, people, groups of people, passwords, email addresses, printers, etc.

If you have configured LDAP support and an administrator is required to authenticate using an LDAP server, the FortiGate unit contacts the LDAP server for authentication. If the LDAP server cannot authenticate the administrator, the FortiGate unit refuses the connection.

If you want to use an LDAP server to authenticate administrators in your VDOM, you must configure the authentication before you create the administrator accounts. To do this you need to:

- configure an LDAP server
- create an LDAP user group
- configure an administrator to authenticate with an LDAP server.

To view the LDAP server list, go to User > Remote > LDAP.

TACACS+ authentication for administrators

Terminal Access Controller Access-Control System (TACACS+) is a remote authentication protocol that provides access control for routers, network access servers, and other network computing devices via one or more centralized servers.

If you have configured TACACS+ support and an administrator is required to authenticate using a TACACS+ server, the FortiGate unit contacts the TACACS+ server for authentication. If the TACACS+ server cannot authenticate the administrator, the connection is refused by the FortiGate unit.

If you want to use an TACACS+ server to authenticate administrators in your VDOM, you must configure the authentication before you create the administrator accounts. To do this you need to:

- configure the FortiGate unit to access the TACACS+ server
- create a TACACS+ user group
- configure an administrator to authenticate with a TACACS+ server.
PKI certificate authentication for administrators

Public Key Infrastructure (PKI) authentication uses a certificate authentication library that takes a list of peers, peer groups, and user groups and returns authentication successful or denied notifications. Users only need a valid certificate for successful authentication; no username or password is necessary.

To use PKI authentication for an administrator, you must configure the authentication before you create the administrator accounts. To do this you need to:

- configure a PKI user
- create a PKI user group
- configure an administrator to authenticate with a PKI certificate.

Administrator profiles

Administer profiles define what the administrator user can do when logged into the FortiGate unit. When you set up an administrator user account, you also assign an administrator profile, which dictates what the administrator user will see. Depending on the nature of the administrator’s work, access level or seniority, you can allow them to view and configure as much, or as little, as required.

super_admin profile

The super_admin administrator is the administrative account that the primary administrator should have to log into the FortiGate unit. The profile can not be deleted or modified to ensure there is always a method to administer the FortiGate unit. This user profile has access to all components of FortiOS, including the ability to add and remove other system administrators. For some administrative functions, such as backing up and restoring the configuration using SCP, super_admin access is required.

Creating profiles

To configure administrator profiles go to System > Admin > Admin Profile. You can only assign one profile to an administrator user.

On the New Admin Profile page, you define the components of FortiOS that will be available to view and/or edit. For example, if you configure a profile so that the administrator can only access the firewall components, when an administrator with that profile logs into the FortiGate unit, they will only be able to view and edit any firewall components including policies, addresses, schedules and any other settings that directly affect security policies.

By default, the super_admin user (username is “admin”), does not have a password. Ensure you assign a password. You can also change the name of the account from “admin” to another name for better security.
Global and vdom profiles

By default, when you add a new administrative profile, it is set to have a vdom scope. That is, only the super_admin has a global profile that enables configuration of the entire FortiGate unit.

There may be instances where additional global administrative profiles may be required. To add more global profiles, use the following CLI command to set or change an administrative profile to be global.

```
config system accprofile
  set scope global
  ...
end
```

Once the scope is set, you can enable the read and read/write settings.

Adding administrators

When adding administrators, you are setting up the administrator’s user account. An administrator account comprises of an administrator’s basic settings as well as their access profile. The access profile is a definition of what the administrator is capable of viewing and editing. For information on administrator profiles, see “Administrator profiles” on page 81.

To add an administrator - web-based manager

1. Go to System > Admin > Administrators.
2. Select Create New.
3. Enter the administrator name.
4. Select the type of account it will be. If you select Remote, the FortiGate unit can reference a RADIUS, LDAP or TACAS+ server.
5. When selecting Remote or PKI accounts, select the User Group the account will access.

For information on logging in using remote authentication servers, see the User Authentication Guide. For an example of setting up a user with LDAP, see “LDAP Admin Access and Authorization” on page 83.
6 Enter the password for the user.
 This may be a temporary password that the administrator can change later. Passwords can be up to 256 characters in length. For more information on passwords, see “Passwords” on page 74.

7 Select OK.

To add an administrator - CLI

 config system admin
 edit <admin_name>
 set password <password>
 set accprofile <profile_name>
 end

LDAP Admin Access and Authorization

You can use the LDAP server as a means to add administrative users, saving the time to add users to the FortiGate unit administrator list. After configuring, any user within the selected LDAP group server can automatically log into the FortiGate unit as an administrator. Ensure that the admin profile is the correct level of access, or the users within the LDAP group are the only ones authorized to configure or modify the configuration of the FortiGate unit.

To do this, requires three steps:
 • configure the LDAP server
 • add the LDAP server to a user group
 • configure the administrator account

Configure the LDAP server

First set up the LDAP server as you normally would, and include a group to bind to.

To configure the LDAP server - web-based manager

1 Go to User > Remote > LDAP and select Create New.
2 Enter a Name for the server.
3 Enter the Server IP address or name.
4 Enter the Common Name Identifier and Distinguished Name.
5 Set the Bind Type to Regular and enter the User DN and Password.
6 Select OK.

To configure the LDAP server - CLI

 config user ldap
 edit <ldap_server_name>
 set server <server_ip>
 set cnid cn
 set dn DC=XYZ,DC=COM
 set type regular
 set username CN=Administrator,CN=Users,DC=XYZ,DC=COM
 set password <password>
 set member-attr <group_binding>
 end
Add the LDAP server to a user group

Next, create a user group that will include the LDAP server that was created above.

To create a user group - web-based manager
2. Enter a Name for the group.
3. In the section labelled Remote authentication servers, select Add.
4. Select the Remote Server from the drop-down list.
5. Select OK.

To create a user group - CLI

```
config user group
  edit <group_name>
    config match
      edit 1
        set server-name <LDAP_server>
        set group-name <group_name>
    end
  end
```

Configure the administrator account

Now you can create a new administrator, where rather than entering a password, you will use the new user group and the wildcard option for authentication.

To create an administrator - web-based manager
1. Go to System > Admin > Administrators and select Create New.
2. In the Administrator field, enter the name for the administrator.
3. For Type, select Remote.
4. Select the User Group created above from the drop-down list.
5. Select Wildcard.
 The Wildcard option allows for LDAP users to connect as this administrator.
6. Select an Admin Profile.
7. Select OK.

To create an administrator - CLI

```
config system admin
  edit <admin_name>
    set remote-auth enable
    set accprofile super_admin
    set wildcard enable
    set remote-group ldap
  end
```

Monitoring administrators

You can view the administrators logged in using the System Information widget on the Dashboard. On the widget is the Current Administrator row that shows the administrator logged in and the total logged in. Selecting Details displays the administrators, where they are logging in from and how (CLI, web-based manager) and when they logged in.
You are also able to monitor the activities the administrators perform on the FortiGate unit using the logging of events. Event logs include a number of options to track configuration changes.

To set logging - web-based manager

1. Go to *Log & Report > Log Config > Log Setting*.
2. Select a location to store logs and set the **Minimum log level** to Information.
3. Select Apply.
5. Select the following event logs:
 - System activity event
 - Admin event
 - Configuration change event
6. Select Apply.

To set logging - CLI

```
config log <log_location> (log configuration will vary depending on location)
end
config log eventfilter
   set admin enable
   set system enable
   set config enable
end
```

To view the logs go to *Log & Report > Log Access > Event*.

Trusted hosts

Setting trusted hosts for administrators limits what computers an administrator can log in from. When you identify a trusted host, the FortiGate unit will only accept the administrator’s login from the configured IP address. Any attempt to log in with the same credentials from any other IP address will be dropped. To ensure the administrator has access from different locations, you can enter up to ten IP addresses. Ideally, this should be kept to a minimum. For higher security, use an IP address with a net mask of 255.255.255.255, and enter an IP address (non-zero) in each of the three default trusted host fields.

Trusted hosts are configured when adding a new administrator by going to *System > Admin > Administrators* in the web-based manager or *config system admin* in the CLI.

The trusted hosts apply to the web-based manager, ping, snmp and the CLI when accessed through Telnet or SSH. CLI access through the console port is not affected. Also ensure all entries contain actual IP addresses, not the default 0.0.0.0.

General Settings

Go to *System > Admin > Settings* to configure basic settings for administrative access, password policies and displaying additional options in the web-based manager.
Administrative port settings

The Administrative Settings enable you to change the default port configurations for administrative connections to the FortiGate unit for added security. When connecting to the FortiGate unit when the port has changed, the port must be included, such as https://<ip_address>:<port>. For example, if you are connecting to the FortiGate unit using port 99, the url would be https://192.168.1.99:99.

If you make a change to the default port number for HTTP, HTTPS, Telnet, or SSH, ensure that the port number is unique.

Password policies

Password policies, available by going to System > Admin > Settings, enable you to create a password policy that any administrator or user who updates their password, must follow. Using the available options you can define the required length of the password, what it must contain (numbers, upper and lower case, and so on) and an expiry time frame.

The FortiGate unit will warn of any password that is added and does not meet the criteria.

Display options

To minimize clutter on the web-based manager interface, a number of FortiOS features to not appear on the web-based manager. By going to System > Admin Settings, you can enable, or if not needed, disable various features. The change takes effect immediately without having to log out or reboot the device.

Backing up the configuration

Once you configure the FortiGate unit and it is working correctly, it is extremely important that you back up the configuration. In some cases, you may need to reset the FortiGate unit to factory defaults, or perform a TFTP upload of the firmware. In these instances, the configuration on the device will be lost.

Always back up the configuration and store it on the management computer or off site. It is also recommended that once the FortiGate is configured, and any further changes are made, that you back up the configuration immediately, to ensure you have the most current configuration available.

You have the option to save the configuration file to various locations including the local PC, USB key, FTP and TFTP site. The latter two are configurable through the CLI only.

If you have VDOMs, you can back up the configuration of the entire FortiGate unit, or only a specific VDOM. Note that if you are using FortiManager or the Fortinet Management Services (FAMS), full backups are performed, and the option to backup individual VDOMs will not appear.

To back up the FortiGate configuration - web-based manager

1. Go to System > Dashboard > Status.
2. On the System Information widget, select Backup for the System Configuration.
3. Select to back up to your Local PC, FortiManager or to a USB key.

The USB Disk option will be grayed out if no USB drive is inserted in the USB port. The FortiManager option will not be available if the FortiGate unit is not being managed by a FortiManager system.
4 If VDOMs are enabled, select to backup the entire FortiGate configuration (Full Config) or only a specific VDOM configuration (VDOM Config).
5 If backing up a VDOM configuration, select the VDOM name from the list.
6 Select Encrypt configuration file.
 Encryption must be enabled on the backup file to back up VPN certificates.
7 Enter a password and enter it again to confirm it. You will need this password to restore the file.
8 Select Backup.
9 The web browser will prompt you for a location to save the configuration file. The configuration file will have a .conf extension.

To back up the FortiGate configuration - CLI

 execute backup config management-station <comment>
 ... or ...
 execute backup config usb <backup_filename> [backup_password]
 ... or for FTP, note that port number, username are optional depending on the FTP site...
 execute backup config ftp <backup_filename> <ftp_server>
 [port] [user_name] [password]
 ... or for TFTP ...
 execute backup config tftp <backup_filename> <tftp_servers> <password>

Use the same commands to backup a VDOM configuration by first entering the commands:
 config vdom
 edit <vdom_name>

It is a good practice to backup the FortiGate configuration after any modification to any of the FortiGate settings. Alternatively, before performing an upgrade to the firmware, ensure you back up the configuration before upgrading. Should anything happen during the upgrade that changes the configuration, you can easily restore the saved configuration.

Backup and restore a configuration file using SCP

You can use secure copy protocol (SCP) to download the configuration file from the FortiGate unit as an alternative method of backing up the configuration file or an individual VDOM configuration file. This is done by enabling SCP for and administrator account and enabling SSH on a port used by the SCP client application to connect to the FortiGate unit. SCP is enabled using the CLI commands:
 config system global
 set admin-scp enable
 end

Use the same commands to backup a VDOM configuration by first entering the commands:
 config global
 set admin-scp enable
 end
 config vdom
 edit <vdom_name>
Enable SSH access on the interface

SCP uses the SSH protocol to provide secure file transfer. The interface you use for administration must allow SSH access.

To enable SSH - web-based manager:
1. Go to System > Network > Interface.
2. Select the interface you use for administrative access and select Edit.
3. In the Administrative Access section, select SSH.
4. Select OK.

To enable SSH - CLI:

```
config system interface
  edit <interface_name>
    set allowaccess ping https ssh
end
```

When adding to, or removing a protocol, you must type the entire list again. For example, if you have an access list of HTTPS and SSH, and you want to add PING, typing:

```
set allowaccess ping
```

...only PING will be set. In this case, you must type...

```
set allowaccess https ssh ping
```

Using the SCP client

The FortiGate unit downloads the configuration file as `sys_conf`. Use the following syntax to download the file:

Linux

```
scp admin@<FortiGate_IP>:sys_config <location>
```

Windows

```
pscp admin@<FortiGate_IP>:sys_config <location>
```

These examples show how to download the configuration file from a FortiGate-100A, at IP address 172.20.120.171, using Linux and Windows SCP clients.

Linux client example

To download the configuration file to a local directory called `~/config`, enter the following command:

```
scp admin@172.20.120.171:sys_config ~/config
```

Enter the admin password when prompted.

Windows client example

To download the configuration file to a local directory called `c:\config`, enter the following command in a Command Prompt window:

```
pscp admin@172.20.120.171:sys_config c:\config
```

Enter the admin password when prompted.
SCP public-private key authentication

SCP authenticates itself to the FortiGate unit in the same way as an administrator using SSH accesses the CLI. Instead of using a password, you can configure the SCP client and the FortiGate unit with a public-private key pair.

To configure public-private key authentication

1. Create a public-private key pair using a key generator compatible with your SCP client.
2. Save the private key to the location on your computer where your SSH keys are stored.
 This step depends on your SCP client. The Secure Shell key generator automatically stores the private key.
3. Copy the public key to the FortiGate unit using the CLI commands:
   ```
   config system admin
   edit admin
   set ssh-public-key1 "<key-type> <key-value>"
   end
   ```
 `<key-type>` must be the ssh-dss for a DSA key or ssh-rsa for an RSA key. For the `<key-value>`, copy the public key data and paste it into the CLI command.
 If you are copying the key data from Windows Notepad, copy one line at a time and ensure that you paste each line of key data at the end of the previously pasted data. As well:
 - Do not copy the end-of-line characters that appear as small rectangles in Notepad.
 - Do not copy the `---- BEGIN SSH2 PUBLIC KEY ----` or `Comment: "[2048-bit dsa,...]"` lines.
 - Do not copy the `---- END SSH2 PUBLIC KEY ----` line.
4. Type the closing quotation mark and press Enter.
 Your SCP client can now authenticate to the FortiGate unit based on SSH keys rather than the administrator password.

Restoring a configuration using SCP

To restore the configuration using SCP, use the commands:
```
scp <local_file> <admin_user>@<FGT_IP>:fgt_restore_config
```
To use this command/method of restoring the FortiGate configuration, you need to log in as the "admin" administrator.

Restoring a configuration

Should you need to restore a configuration file, use the following steps.

To restore the FortiGate configuration - web-based manager

1. Go to System > Dashboard > Status.
2. On the System Information widget, select Restore for the System Configuration.
3. Select to upload the configuration file to be restored from your Local PC or a USB key.
 The USB Disk option will be grayed out if no USB drive is inserted in the USB port. The FortiManager option will not be available if the FortiGate unit is not being managed by a FortiManager system.
4 Enter the path and file name of the configuration file, or select Browse to locate the file.
5 Enter a password if required.
6 Select Restore.

To back up the FortiGate configuration - CLI

execute restore config management-station normal 0
... or ...
execute restore config usb <filename> [<password>]
... or for FTP, note that port number, username are optional depending on the FTP site...

execute backup config ftp <backup_filename> <ftp_server>
 [<port>] [<user_name>] [<password>]
... or for TFTP ...

execute backup config tftp <backup_filename> <tftp_server> <password>

The FortiGate unit will load the configuration file and restart. Once the restart has completed, verify that the configuration has been restored.

Configuration revisions

The Configuration Revisions menu enables you to manage multiple versions of configuration files. Revision control requires either a configured central management server, or FortiGate units with 512 MB or more of memory. The central management server can either be a FortiManager unit or the FortiGuard Analysis & Management Service.

When revision control is enabled on your unit, and configurations have been backed up, a list of saved revisions of those backed-up configurations appears.

Configuration revisions are viewed in System > Maintenance > Configuration Revision.

Firmware

Fortinet periodically updates the FortiGate firmware to include new features and address issues. After you have registered your FortiGate unit, you can download firmware updates from the support web site, http://support.fortinet.com.

You can also use the instructions in this chapter to revert, to a previous version. The FortiGate unit includes a number of firmware installation options that enables you to test new firmware without disrupting the existing installation, and load it from different locations as required.

Fortinet issues patch releases--maintenance release builds that resolve important issues. Fortinet strongly recommends reviewing the release notes for the patch release, as well as testing and reviewing the patch release before upgrading the firmware. Follow the steps below:

- download and review the release notes for the patch release
- download the patch release
- back up the current configuration
- test the patch release until you are satisfied that it applies to your configuration.

Installing a patch release without reviewing release notes or testing the firmware may result in changes to settings or unexpected issues.
Only FortiGate admin user and administrators whose access profiles contain system read and write privileges can change the FortiGate firmware.

Downloading firmware

Firmware images for all FortiGate units is available on the Fortinet Customer Support web site. You must register your FortiGate unit to access firmware images. Register the FortiGate unit by visiting http://support.fortinet.com and select Product Registration.

To download firmware

1. Log into the site using your user name and password.
2. Go to Firmware Images > FortiGate.
3. Select the most recent FortiOS version.
4. Locate the firmware for your FortiGate unit, right-click the link and select the Download option for your browser.

Always review the *Release Notes* for a new firmware release before installing. The *Release Notes* can include information that is not available in the regular documentation.

Upgrading the firmware - web-based manager

Installing firmware replaces your current antivirus and attack definitions, along with the definitions included with the firmware release you are installing. After you install new firmware, make sure that antivirus and attack definitions are up to date.

Always remember to back up your configuration before doing any firmware upgrade or downgrade.

To upgrade the firmware

1. Download the firmware image file to your management computer.
2. Log into the web-based manager as the admin administrative user.
5. Type the path and filename of the firmware image file, or select Browse and locate the file.
6. Select OK.

The FortiGate unit uploads the firmware image file, upgrades to the new firmware version, restarts, and displays the FortiGate login. This process takes a few minutes.

Reverting to a previous firmware version

The following procedures revert the FortiGate unit to its factory default configuration and deletes any configuration settings.

Before beginning this procedures, ensure you back up the FortiGate unit configuration. If you are reverting to a previous FortiOS version, you might not be able to restore the previous configuration from the backup configuration file.
To revert to a previous firmware version

1. Copy the firmware image file to the management computer.
2. Log into the FortiGate web-based manager.
5. Type the path and filename of the firmware image file, or select Browse and locate the file.
6. Select OK.
 - The FortiGate unit uploads the firmware image file, reverts to the old firmware version, resets the configuration, restarts, and displays the FortiGate login. This process takes a few minutes.
7. Log into the web-based manager.
8. Restore your configuration.

 For information about restoring your configuration see “Restoring a configuration” on page 89.

Configuration Revision

The Configuration Revisions menu enables you to manage multiple versions of configuration files on models that have a 512 flash memory and higher. Revision control requires either a configured central management server, or the local hard drive. The central management server can either be a FortiManager unit or the FortiGuard Analysis and Management Service.

If central management is not configured on your FortiGate unit, a message appears to tell you to do one of the following:
- enable central management (see Central management)
- obtain a valid license.

When revision control is enabled on your FortiGate unit, and configurations have been backed up, a list of saved revisions of those backed-up configurations appears.
Configuration revisions are viewed in System > Maintenance > Configuration Revision.
Configuration Revision page.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>Removes a configuration revision from the list. To remove multiple configurations from within the list, on the Configuration Revision page, in each of the rows of revisions you want removed, select the check box and then select Delete. To remove all configuration revisions from within the list, on the Configuration Revision page, select the check box in the check box column and then select Delete.</td>
</tr>
<tr>
<td>Details</td>
<td>View the CLI settings of a configuration revision.</td>
</tr>
<tr>
<td>Change Comments</td>
<td>Modifies the description for the configuration revision.</td>
</tr>
<tr>
<td>Diff</td>
<td>Select when you want to compare two revisions. You must select two revisions. From the Diff Display window you can view and compare the selected revision to one of: - the current configuration - a selected revision from the displayed list including revision history and templates - a specified revision number.</td>
</tr>
<tr>
<td>Revert</td>
<td>Restores the previous selected revision.</td>
</tr>
<tr>
<td>Upload</td>
<td>Uploads a configuration file to the FortiGate unit, which is then added to the list.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OS Version</th>
<th>The section of the page that contains the configuration files that belong to the specified FortiOS firmware version and build number. For example, if you have four configuration revisions for 4.0 MR1 (build-178) they appear in the section OS Version 4.00 build178 on the Configuration Revision page.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision</td>
<td>An incremental number indicating the order in which the configurations were saved. These may not be consecutive numbers if configurations are deleted.</td>
</tr>
<tr>
<td>Date/Time</td>
<td>The date and time this configuration was saved on the FortiGate unit.</td>
</tr>
<tr>
<td>Administrator</td>
<td>The administrator account that was used to back up this revision.</td>
</tr>
<tr>
<td>Comments</td>
<td>Any relevant information saved with the revision.</td>
</tr>
<tr>
<td>Ref.</td>
<td>Displays the number of times the object is referenced to other objects.</td>
</tr>
</tbody>
</table>

Upgrading the firmware - CLI

Installing firmware replaces your current antivirus and attack definitions, along with the definitions included with the firmware release you are installing. After you install new firmware, make sure that antivirus and attack definitions are up to date. You can also use the CLI command `execute update-now` to update the antivirus and attack definitions. For more information, see the *FortiGate Administration Guide*.
Before you begin, ensure you have a TFTP server running and accessible to the FortiGate unit.

To upgrade the firmware using the CLI

1. Make sure the TFTP server is running.
2. Copy the new firmware image file to the root directory of the TFTP server.
3. Log into the CLI.
4. Make sure the FortiGate unit can connect to the TFTP server.

 You can use the following command to ping the computer running the TFTP server. For example, if the IP address of the TFTP server is 192.168.1.168:

   ```
   execute ping 192.168.1.168
   ```

5. Enter the following command to copy the firmware image from the TFTP server to the FortiGate unit:

   ```
   execute restore image tftp <filename> <tftp_ipv4>
   ```

 Where `<name_str>` is the name of the firmware image file and `<tftp_ip4>` is the IP address of the TFTP server. For example, if the firmware image file name is `image.out` and the IP address of the TFTP server is 192.168.1.168, enter:

   ```
   execute restore image tftp image.out 192.168.1.168
   ```

 The FortiGate unit responds with the message:

 This operation will replace the current firmware version!

 Do you want to continue? (y/n)

6. Type `y`.

 The FortiGate unit uploads the firmware image file, upgrades to the new firmware version, and restarts. This process takes a few minutes.

7. Reconnect to the CLI.

8. Update antivirus and attack definitions, by entering:

   ```
   execute update-now
   ```

USB Auto-Install

The USB Auto-Install feature automatically updates the FortiGate configuration file and firmware image file on a system reboot. Also, this feature provides you with an additional backup if you are unable to save your system settings before shutting down or rebooting your FortiGate unit.

You need an unencrypted configuration file for this feature. Also the required files, must be in the root directory of the USB key.

The FortiGate unit will only load a configuration file from a USB key when the FortiGate unit is restarted from a factory reset. This means that with any normal reboot commands, the FortiGate unit will not reload the configuration file.

This was done to ensure that if the USB key was left in the USB port, an older configuration would not be loaded by accident, losing any configuration settings changed after the initial save.
To configure the USB Auto-Install - web-based manager

1. Go to System > Config > Advanced.
2. Select the following:
 - On system restart, automatically update FortiGate configuration file if default file name is available on the USB disk.
 - On system restart, automatically update FortiGate firmware image if default image is available on the USB disk.
3. Enter the configuration and image file names or use the default configuration filename (system.conf) and default image name (image.out).
4. The default configuration filename should show in the Default configuration file name field.
5. Select Apply.

To configure the USB Auto-Install using the CLI

1. Log into the CLI.
2. Enter the following command:
   ```
   config system auto-install
   set default-config-file <filename>
   set auto-install-config {enable | disable}
   set default-image-file <filename>
   set auto-install-image {enable | disable}
   end
   ```

Reverting to a previous firmware version

This procedure reverts the FortiGate unit to its factory default configuration and deletes IPS custom signatures, web content lists, email filtering lists, and changes to replacement messages.

Before beginning this procedure, it is recommended that you:

- back up the FortiGate unit system configuration using the command `execute backup config`
- back up the IPS custom signatures using the command `execute backup ipsuserdefsig`
- back up web content and email filtering lists

To use the following procedure, you must have a TFTP server the FortiGate unit can connect to.

To revert to a previous firmware version using the CLI

1. Make sure the TFTP server is running
2. Copy the firmware image file to the root directory of the TFTP server.
3. Log into the FortiGate CLI.
4. Make sure the FortiGate unit can connect to the TFTP server execute by using the `execute ping` command.
5. Enter the following command to copy the firmware image from the TFTP server to the FortiGate unit:
execute restore image tftp <name_str> <tftp_ipv4>

Where <name_str> is the name of the firmware image file and <tftp_ipv4> is the IP address of the TFTP server. For example, if the firmware image file name is imagev28.out and the IP address of the TFTP server is 192.168.1.168, enter:

execute restore image tftp imagev28.out 192.168.1.168

The FortiGate unit responds with this message:

This operation will replace the current firmware version!
Do you want to continue? (y/n)

6 Type y.

The FortiGate unit uploads the firmware image file. After the file uploads, a message similar to the following appears:

Get image from tftp server OK.
Check image OK.
This operation will downgrade the current firmware version!
Do you want to continue? (y/n)

7 Type y.

The FortiGate unit reverts to the old firmware version, resets the configuration to factory defaults, and restarts. This process takes a few minutes.

8 Reconnect to the CLI.

9 To restore your previous configuration, if needed, use the command:

execute restore config <name_str> <tftp_ipv4>

10 Update antivirus and attack definitions using the command:

execute update-now.

Installing firmware from a system reboot using the CLI

This procedure installs a firmware image and resets the FortiGate unit to default settings. You can use this procedure to upgrade to a new firmware version, revert to an older firmware version, or re-install the current firmware.

To use this procedure, you must connect to the CLI using the FortiGate console port and a RJ-45 to DB-9, or null modem cable.

This procedure reverts the FortiGate unit to its factory default configuration.

For this procedure you install a TFTP server that you can connect to from the FortiGate internal interface. The TFTP server should be on the same subnet as the internal interface.

Before beginning this procedure, ensure you back up the FortiGate unit configuration.

If you are reverting to a previous FortiOS version, you might not be able to restore the previous configuration from the backup configuration file.

Installing firmware replaces your current antivirus and attack definitions, along with the definitions included with the firmware release you are installing. After you install new firmware, make sure that antivirus and attack definitions are up to date.
To install firmware from a system reboot

1. Connect to the CLI using the RJ-45 to DB-9 or null modem cable.
2. Make sure the TFTP server is running.
3. Copy the new firmware image file to the root directory of the TFTP server.
4. Make sure the internal interface is connected to the same network as the TFTP server.
5. To confirm the FortiGate unit can connect to the TFTP server, use the following command to ping the computer running the TFTP server. For example, if the IP address of the TFTP server is 192.168.1.168:
   ```
   execute ping 192.168.1.168
   ```
6. Enter the following command to restart the FortiGate unit.
   ```
   execute reboot
   ```
 The FortiGate unit responds with the following message:
   ```
   This operation will reboot the system!
   Do you want to continue? (y/n)
   ```
7. Type y.
 As the FortiGate unit starts, a series of system startup messages appears. When the following messages appears:
   ```
   Press any key to display configuration menu..........
   ```
 Immediately press any key to interrupt the system startup.

 ![Tip]
 You have only 3 seconds to press any key. If you do not press a key soon enough, the FortiGate unit reboots and you must log in and repeat the execute reboot command.

 If you successfully interrupt the startup process, the following messages appears:
   ```
   [G]: Get firmware image from TFTP server.
   [F]: Format boot device.
   [B]: Boot with backup firmware and set as default
   [C]: Configuration and information
   [Q]: Quit menu and continue to boot with default firmware.
   [H]: Display this list of options.
   ```
 Enter G, F, Q, or H:
8. Type G to get to the new firmware image form the TFTP server.
 The following message appears:
   ```
   Enter TFTP server address [192.168.1.168]:
   ```
9. Type the address of the TFTP server and press Enter:
 The following message appears:
   ```
   Enter Local Address [192.168.1.188]:
   ```
10. Type an IP address the FortiGate unit can use to connect to the TFTP server. The IP address can be any IP address that is valid for the network the interface is connected to. Make sure you do not enter the IP address of another device on this network.
 The following message appears:
Enter File Name [image.out]:

11 Enter the firmware image filename and press Enter.
 The TFTP server uploads the firmware image file to the FortiGate unit and a message similar to the following appears:

 Save as Default firmware/Backup firmware/Run image without saving: [D/B/R]

12 Type D.
 The FortiGate unit installs the new firmware image and restarts. The installation might take a few minutes to complete.

Backup and Restore from a USB key

Use a USB key to either backup a configuration file or restore a configuration file. You should always make sure a USB key is properly install before proceeding since the FortiGate unit must recognize that the key is installed in its USB port.

To backup configuration using the CLI

1 Log into the CLI.
2 Enter the following command to backup the configuration files:
 exec backup config usb <filename>
3 Enter the following command to check the configuration files are on the key:
 exec usb-disk list

To restore configuration using the CLI

1 Log into the CLI.
2 Enter the following command to restore the configuration files:
 exec restore image usb <filename>
 The FortiGate unit responds with the following message:
 This operation will replace the current firmware version!
 Do you want to continue? (y/n)
3 Type y.

Testing new firmware before installing

FortiOS enables you to test a new firmware image by installing the firmware image from a system reboot and saving it to system memory. After completing this procedure, the FortiGate unit operates using the new firmware image with the current configuration. This new firmware image is not permanently installed. The next time the FortiGate unit restarts, it operates with the originally installed firmware image using the current configuration. If the new firmware image operates successfully, you can install it permanently using the procedure “Upgrading the firmware - web-based manager” on page 91.
To use this procedure, you must connect to the CLI using the FortiGate console port and a RJ-45 to DB-9 or null modem cable. This procedure temporarily installs a new firmware image using your current configuration.

For this procedure you install a TFTP server that you can connect to from the FortiGate internal interface. The TFTP server should be on the same subnet as the internal interface.

To test the new firmware image

1. Connect to the CLI using a RJ-45 to DB-9 or null modem cable.
2. Make sure the TFTP server is running.
3. Copy the new firmware image file to the root directory of the TFTP server.
4. Make sure the FortiGate unit can connect to the TFTP server using the `execute ping` command.
5. Enter the following command to restart the FortiGate unit:
   ```
   execute reboot
   ```
6. As the FortiGate unit reboots, press any key to interrupt the system startup. As the FortiGate unit starts, a series of system startup messages appears. When the following messages appears:
   ```
   Press any key to display configuration menu....
   ```
7. Immediately press any key to interrupt the system startup.

 You have only 3 seconds to press any key. If you do not press a key soon enough, the FortiGate unit reboots and you must login and repeat the execute reboot command.

If you successfully interrupt the startup process, the following messages appears:

 - [G]: Get firmware image from TFTP server.
 - [F]: Format boot device.
 - [B]: Boot with backup firmware and set as default
 - [C]: Configuration and information
 - [Q]: Quit menu and continue to boot with default firmware.
 - [H]: Display this list of options.

8. Type G to get the new firmware image from the TFTP server.
 The following message appears:
   ```
   Enter TFTP server address [192.168.1.168]:
   ```
9. Type the address of the TFTP server and press Enter:
 The following message appears:
   ```
   Enter Local Address [192.168.1.188]:
   ```
10. Type an IP address of the FortiGate unit to connect to the TFTP server.
 The IP address must be on the same network as the TFTP server, but make sure you do not use the IP address of another device on the network.
 The following message appears:
    ```
    Enter File Name [image.out]:
    ```
11 Enter the firmware image file name and press Enter. The TFTP server uploads the firmware image file to the FortiGate unit and the following appears.

 Save as Default firmware/Backup firmware/Run image without saving: [D/B/R]

12 Type R.

 The FortiGate image is installed to system memory and the FortiGate unit starts running the new firmware image, but with its current configuration.

 You can test the new firmware image as required. When done testing, you can reboot the FortiGate unit, and the FortiGate unit will resume using the firmware that was running before you installed the test firmware.

Controlled upgrade

Using a controlled upgrade, you can upload a new version of the FortiOS firmware to a separate partition in the FortiGate memory for later upgrade. The FortiGate unit can also be configured so that when it is rebooted, it will automatically load the new firmware (CLI only). Using this option, you can stage a number of FortiGate units to do an upgrade simultaneously to all devices using FortiManager or script.

To load the firmware for later installation - web-based manager

1 Go to System > Dashboard > Status.

2 Under System Information > Firmware Version, select Update.

3 Type the path and filename of the firmware image file, or select Browse and locate the file.

4 Deselect the Boot the New Firmware option

5 Select OK.

To load the firmware for later installation - CLI

 execute restore secondary-image {ftp | tftp | usb}

To set the FortiGate unit so that when it reboots, the new firmware is loaded, use the CLI command...

 execute set-next-reboot {primary | secondary}

... where {primary | secondary} is the partition with the preloaded firmware.

To trigger the upgrade using the web-based manager

1 Go to System > Dashboard > Status.

2 Under System Information > Firmware Version, select Details.

3 Select the check box for the new firmware version.
 The Comments column indicates which firmware version is the current active version.

4 Select Upgrade icon.
Central management

Administering one or two FortiGate units is fairly simple enough, especially when they are in the same room or building. However, if you are administering many FortiGate units that may be located in locations in a large geographical area, or in the world, you will need a more efficient method of maintaining firmware upgrades, configuration changes and updates.

The FortiManager family of appliances supply the tools needed to effectively manage any size Fortinet security infrastructure, from a few devices to thousands of appliances. The appliances provide centralized policy-based provisioning, configuration, and update management. They also offer end-to-end network monitoring for added control. Managers can control administrative access and simplify policy deployment using role-based administration to define user privileges for specific management domains and functions by aggregating collections of Fortinet appliances and agents into independent management domains. By locally hosting security content updates for managed devices and agents, FortiManager appliances minimize Web filtering rating request response time and maximize network protection.

This chapter describes the basics of using FortiManager as an administration tool for multiple FortiGate units. It describes the basics of setting up a FortiGate unit in FortiManager, and some key management features you can use within FortiManager to manage the FortiGate unit. For full details and instructions on FortiManager, see the FortiManager Administration Guide.

This section includes the topics:
- Adding a FortiGate to FortiManager
- Configuration through FortiManager
- Firmware updates
- FortiGuard
- Backup and restore configurations
- Administrative domains

Adding a FortiGate to FortiManager

Before you can use the FortiManager unit to maintain a FortiGate, you need to add it to the FortiManager unit. To do this requires configuration on both the FortiGate and FortiManager. This section describes the basics to configure management using a FortiManager device. For more information on the interaction of FortiManager with the FortiGate unit, see the FortiManager documentation.

FortiGate configuration

These steps ensure that the FortiGate unit will be able to receive updated antivirus and IPS updates, and allow remote management through the FortiManager system. You can add a FortiGate unit whether it is running in either NAT mode or transparent mode. The FortiManager unit provides remote management of a FortiGate unit over TCP port 541.
To configure the FortiGate unit - web-based manager

1. Log in to the FortiGate unit.
2. Go to System > Admin > Settings.
3. Enter the IP address for the FortiManager.
4. Select Send Request.

The FortiManager ID appears in the Trusted FortiManager table, and can now be managed by the FortiManager unit, once you add it to the Device Manager.

As an additional security measure, you can also select Registration Password and enter a password to connect to the FortiManager in an upcoming FortiManager release.

To configure the FortiGate unit - CLI

```bash
config system central-management
    set fmg <ip_address>
end
```

To use the registration password in an upcoming FortiManager release enter:

```bash
execute central-mgmt register-device <fmg-serial-no><fmg-register-password><fgt-usrname><fgt-password>
```

Configuring an SSL connection

With FortiManager 4.0 MR2 Patch 6 and FortiOS 4.0 MR3, you can configure an SSL connection between the two devices, and select the encryption level.

Use the following CLI commands in FortiOS to configure the encryption connection:

```bash
config central-management setting
    set status enable
    set enc-algorithm {default* | high | low | disable}
end
```

The default encryption automatically sets high and medium encryption algorithms.

Algorithms used for high, medium, and low follows openssl definitions:

- **High** - Key lengths larger than 128 bits, and some cipher suites with 128-bit keys.

 Algorithms are: DHE-RSA-AES256-SHA;AES256-SHA;EDH-RSA-DES-CBC3-SHA;DES-CBC3-SHA;DES-CBC3-MD5;DHE-RSA-AES128-SHA;AES128-SHA

- **Medium** - Key strengths of 128 bit encryption.

 Algorithm are:RC4-SHA;RC4-MD5;RC4-MD5

- **Low** - Key strengths of 64 or 56 bit encryption algorithms but excluding export cipher suites.

 Algorithms: EDH-RSA-DES-CBCD-SHA; DES-CBC-SHA; DES-CBC-MD5.
Central management

FortiManager configuration

After enabling Central Management and indicating the FortiManager unit that will provide the management of the FortiGate unit, you can add it to the Device Manager in the FortiManager web-based manager.

To add the FortiGate unit to the Device Manager in FortiManager

1. Log in to the FortiManager unit.
2. Select the Device Manager tab.
3. Select Add Device from the top tool bar.
4. Enter the IP address of the FortiGate unit.
5. Enter the Name of the device.
 - This can be the model name, or functional name, such as West Building, or Accounting Firewall.
6. Enter the remaining information as required.
7. Select OK.

Configuration through FortiManager

With the FortiManager system, you can monitor and configure multiple FortiGate units from one location and log in. Within the FortiManager system, you can view a FortiGate unit and its web-based manager from the Device Manager. From there you can make the usual configuration updates and changes, without having to log in and out of multiple FortiGate units.

When under control of a FortiManager system, administrators will not be able to configure the FortiGate unit. When trying to change options, the FortiGate unit displays a message that it is configured through FortiManager, and any changes may be reverted.

FortiManager enables you to complete the configuration, by going to the Device Manager, selecting the FortiGate unit and using the same menu structure and pages as you would see in the FortiGate web-based manager. All changes to the FortiGate configuration are stored locally on the FortiManager unit until you synchronize with the FortiGate unit.

Global objects

If you are maintaining a number of FortiGate units within a network, many of the policies and configuration elements will be the same across the corporation. In these instances, the adding and editing of many of the same policies will be a tedious and error-prone activity. With FortiManager global objects, this level of configuration is simplified.

A global object is an object that is not associated specifically with one device or group. Global objects includes security policies, a DNS server, VPN, and IP pools.

The Global Objects window is where you can configure global objects and copy the configurations to the FortiManager device database for a selected device or a group of devices. You can also import configurations from the FortiManager device database for a selected device and modify the configuration as required.

When configuring or creating a global policy object the interface, prompts, and fields are the same as creating the same object on a FortiGate unit using the FortiGate web-based manager.
Locking the FortiGate web-based manager

When you use the FortiManager to manage multiple FortiGate units, a local FortiGate unit becomes locked from any configuration using the web-based manager by an administrator. When an administrator logs into the FortiGate unit, the following message appears:

![Warning Icon]

If the administrator selects Login Read Only, an icon appears at the top of the web-based manager. All configuration options will only have a Return button, rather than the typical OK, Apply and Cancel buttons.

![Figure 9: Read-only icon when under FortiManager management]

Selecting Login Read-Write, a warning appears that any changes may cause the configuration between FortiManager and the FortiGate unit be become out of sync.

Firmware updates

FortiManager can also be the source where firmware updates are performed for multiple FortiGate units, saving time rather than upgrading each FortiGate unit individually.

The FortiManager unit stores local copies of firmware images by either downloading these images from the Fortinet Distribution Network (FDN) or by accepting firmware images that you upload from your management computer.

If you are using the FortiManager unit to download firmware images from the FDN, FortiManager units first validate device licenses. The FDN validates support contracts and provides a list of currently available firmware images. For devices with valid Fortinet Technical Support contracts, you can download new firmware images from the FDN, including release notes.

After firmware images have been either downloaded from the FDN or imported to the firmware list, you can either schedule or immediately upgrade/downgrade a device or group’s firmware.

See the FortiManager Administration Guide for more information on updating the FortiGate firmware using the FortiManager central management.
FortiGuard

FortiManager can also connect to the FortiGuard Distribution Network to receive push updates for IPS signatures and antivirus definitions. These updates can then be used to update multiple FortiGate units throughout an organization. By the FortiManager as the host for updates, bandwidth use is minimized by downloading to one source instead of many.

To receive IPS and antivirus updates from FortiManager, indicate an alternate IP address on the FortiGate unit.

To configure updates from FortiManager
1. Go to System > Config > FortiGuard.
2. Select AntiVirus and IPS Options to expand the options.
3. Select the checkbox next to Use override server address and enter the IP address of the FortiManager unit and port 8890 (ex. 172.20.121.73:8890)
4. Select Apply.

Backup and restore configurations

FortiManager stores configuration files for backup and restore purposes. FortiManager also enables you to save revisions of configuration files. Configuration backups occur automatically. Backups occur when the administrator logs out or the administrator login session expires (times out).

FortiManager also enables you to view differences between different configurations to view where changes have been made.

Administrative domains

FortiManager administrative domains enable the admin administrator to create groupings of devices for configured administrators to monitor and manage. FortiManager can manage a large number of Fortinet appliances. This enables administrators to maintain managed devices specific to their geographic location or business division. This also includes FortiGate units with multiple configured VDOMs.

Each administrator is tied to an administrative domain (ADOM). When that particular administrator logs in, they see only those devices or VDOMs configured for that administrator and ADOM. The one exception is the admin administrator account which can see and maintain all administrative domains and the devices within those domains.

Administrative domains are not enabled by default, and enabling and configuring the domains can only be performed by the admin administrator. The maximum number of administrative domains you can add depends on the FortiManager system model.

See the FortiManager Administration Guide for information on the maximums for each model.
Best practices

The FortiGate unit is installed, and traffic is flowing. With your network sufficiently protected, you can now fine tune the firewall for the best performance and efficiently. This chapter describes configuration options that can ensure your FortiGate unit is running at its best performance.

This section includes the topics on:

- Hardware
- Shutting down
- Performance
- Firewall
- Intrusion protection
- Antivirus
- Web filtering
- Antispam

Hardware

Environmental specifications

Keep the following environmental specifications in mind when installing and setting up your FortiGate unit.

- Operating temperature: 32 to 104°F (0 to 40°C) (temperatures may vary, depending on the FortiGate model)
- If you install the FortiGate unit in a closed or multi-unit rack assembly, the operating ambient temperature of the rack environment may be greater than room ambient temperature. Therefore, make sure to install the equipment in an environment compatible with the manufacturer’s maximum rated ambient temperature.
- Storage temperature: -13 to 158°F (-25 to 70°C) (temperatures may vary, depending on the FortiGate model)
- Humidity: 5 to 90% non-condensing
- Air flow - For rack installation, make sure that the amount of air flow required for safe operation of the equipment is not compromised.
- For free-standing installation, make sure that the appliance has at least 1.5 in. (3.75 cm) of clearance on each side to allow for adequate air flow and cooling.

This device complies with part FCC Class A, Part 15, UL/CUL, C Tick, CE and VCCI. Operation is subject to the following two conditions:

- This device may not cause harmful interference, and
- This device must accept any interference received, including interference that may cause undesired operation.
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

The equipment compliance with FCC radiation exposure limit set forth for uncontrolled Environment.

Risk of Explosion if battery is replaced by an incorrect type. Dispose of used batteries according to the instructions.

To reduce the risk of fire, use only No. 26 AWG or larger UL Listed or CSA Certified Telecommunication Line Cord.

Grounding

- Ensure the FortiGate unit is connected and properly grounded to a lightning and surge protector. WAN or LAN connections that enter the premises from outside the building should be connected to an Ethernet CAT5 (10/100 Mb/s) surge protector.
- Shielded Twisted Pair (STP) Ethernet cables should be used whenever possible rather than Unshielded Twisted Pair (UTP).
- Do not connect or disconnect cables during lightning activity to avoid damage to the FortiGate unit or personal injury.

Rack mount instructions

Elevated Operating Ambient - If installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack environment may be greater than room ambient. Therefore, consideration should be given to installing the equipment in an environment compatible with the maximum ambient temperature (Tma) specified by the manufacturer.

Reduced Air Flow - Installation of the equipment in a rack should be such that the amount of air flow required for safe operation of the equipment is not compromised.

Mechanical Loading - Mounting of the equipment in the rack should be such that a hazardous condition is not achieved due to uneven mechanical loading.
Circuit Overloading - Consideration should be given to the connection of the equipment to the supply circuit and the effect that overloading of the circuits might have on overcurrent protection and supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern.

Reliable Earthing - Reliable earthing of rack-mounted equipment should be maintained. Particular attention should be given to supply connections other than direct connections to the branch circuit (e.g. use of power strips).

Shutting down

Always shut down the FortiGate operating system properly before turning off the power switch to avoid potential hardware problems.

To power off the FortiGate unit - web-based manager
1. Go to System > Status.
2. In the Unit Operation display, select Shutdown.

To power off the FortiGate unit
execute shutdown

Once completing this step you can safely disconnect the power cables from the power supply.

Performance

- Disable any management features you do not need. If you don’t need SSH or SNMP disable them. SSH also provides another possibility for would-be hackers to infiltrate your FortiGate unit.
- Put the most used firewall rules to the top of the interface list.
- Log only necessary traffic. The writing of logs, especially if to an internal hard disk, slows down performance.
- Enable only the required application inspections.
- Keep alert systems to a minimum. If you send logs to a syslog server, you may not need SNMP or email alerts, making for redundant processing.
- Establish scheduled FortiGuard updates at a reasonable rate. Daily every 4-5 hours for most situations, or in more heavy-traffic situations, in the evening when more bandwidth can be available.
- Keep UTM profiles to a minimum. If you do not need a profile on a firewall rule, do not include it.
- Keep VDOMs to a minimum. On low-end FortiGate units, avoid using them if possible.
- Avoid traffic shaping if you need maximum performance. Traffic shaping, by definition, slows down traffic.
Firewall

- Avoid using the All selection for the source and destination addresses. Use addresses or address groups.
- Avoid using Any for the services.
- Use logging on a policy only when necessary. For example, you may want to log all dropped connections but be aware of the performance impact. However, use this sparingly to sample traffic data rather than have it continually storing log information you may not use.
- Use the comment field to input management data; who requested the rule, who authorized it, etc.
- Avoid FQDN addresses if possible. It can cause a performance impact on DNS queries and security impact from DNS spoofing.
- If possible, avoid port ranges on services for security reasons.
- Use groups whenever possible.
- To ensure that all AV push updates occur, ensure you have an AV profile enabled for UTM in a security policy.

Intrusion protection

- Create and use UTM profiles with specific signatures and anomalies you need per-interface and per-rule.
- Do not use predefined or generic profiles. While convenient to supply immediate protection, you should create profiles to suit your network environment.
- If you do use the default profiles, reduce the IPS signatures/anomalies enabled in the profile to conserver processing time and memory.
- If you are going to enable anomalies, make sure you tune thresholds according to your environment.
- If you need protection, but not audit information, disable the logging option.
- Tune the IP-protocol parameter accordingly.

Antivirus

- Enable only the protocols you need to scan. If you have antivirus scans occurring on the SMTP server, or using FortiMail, it is redundant to have it occur on the FortiGate unit as well.
- Reduce the maximum file size to be scanned. Viruses travel usually in small files of around 1 to 2 megabytes.
- Antivirus scanning within an HA cluster can impact performance.
- Enable grayware scanning on UTM profiles tied to internet browsing.
- Do not quarantine files unless you regularly monitor and review them. This is otherwise a waste of space and impacts performance.
- Use file patterns to avoid scanning where it is not required.
- Enable heuristics from the CLI if high security is required using the command config antivirus heuristic.
Web filtering

- Web filtering within an HA cluster impacts performance.
- Always review the DNS settings to ensure the servers are fast.
- Content block may cause performance overhead.
- Local URL filter is faster than FortiGuard web filter, because the filter list is local and the FortiGate unit does not need to go out to the Internet to get the information from a FortiGuard web server.

Antispam

- If possible use, a FortiMail unit. The antispam engines are more robust.
- Use fast DNS servers.
- Use specific UTM profiles for the rule that will use antispam.
- DNS checks may cause false positive with HELO DNS lookup.
- Content analysis (banned words) may impose performance overhead.

Security

- Use NTP to synchronize time on the FortiGate and the core network systems such as email servers, web servers and logging services.
- Enable log rules to match corporate policy. For example, log administration authentication events and access to systems from untrusted interfaces.
- Minimize adhoc changes to live systems if possible to minimize interruptions to the network.
- When not possible, create backup configurations and implement sound audit systems using FortiAnalyzer and FortiManager.
- If you only need to allow access to a system on a specific port, limit the access by creating the strictest rule possible.
FortiGuard

FortiGuard is a world-wide network of servers. The FortiGuard Distribution Network (FDN) of servers provides updates to antivirus, antispam and IPS definitions. Worldwide coverage of FortiGuard services is provided by FortiGuard service points. FortiGuard Subscription Services provide comprehensive Unified Threat Management (UTM) security solutions to enable protection against content and network level threats.

Fortinet employs people around the globe monitoring virus, spyware and vulnerability activities. As these various vulnerabilities are found, signatures are created and pushed to the subscribed FortiGate unit. The Global Threat Research Team enables Fortinet to deliver a combination of multi-layered security intelligence and provide true zero-day protection from new and emerging threats. FortiGuard services are continuously updated year round, 24x7x365.

The FortiGuard Network has data centers around the world located in secure, high availability locations that automatically deliver updates to the Fortinet security platforms to and protect the network with the most up-to-date information.

To ensure optimal response and updates, the FortiGate unit will contact a FortiGuard service point closest to the FortiGate installation, using the configured time zone information.

Every FortiGate unit includes a free 30-day FortiGuard trial license. FortiGuard license management is performed by Fortinet servers. The FortiGate unit automatically contacts a FortiGuard service point when enabling FortiGuard services. Contact Fortinet Technical Support to renew a FortiGuard license after the free trial.

This section includes the topics:

- FortiGuard Services
- Antivirus and IPS
- Web filtering
- Email filtering
- Security tools
- Troubleshooting

FortiGuard Services

The FortiGuard services provide a number of services to monitor world-wide activity and provide the best possible security. Services include:

- **Antispam/Web Filtering** - The FortiGuard Antispam Service uses both a sender IP reputation database and a spam signature database, along with sophisticated spam filtering tools on Fortinet appliances and agents, to detect and block a wide range of spam messages. Updates to the IP reputation and spam signature databases are provided continuously via the global FortiGuard distribution network.

- **Antivirus** - The FortiGuard Antivirus Service provides fully automated updates to ensure protection against the latest content level threats. It employs advanced virus, spyware, and heuristic detection engines to prevent both new and evolving threats and vulnerabilities from gaining access to your network.
• **Intrusion Prevention** - The FortiGuard Intrusion Prevention Service uses a customizable database of more than 4000 known threats to stop attacks that evade conventional firewall defenses. It also provides behavior-based heuristics, enabling the system to recognize threats when no signature has yet been developed. It also provides more than 1000 application identity signatures for complete application control.

• **Web Filtering** - Web Filtering provides Web URL filtering to block access to harmful, inappropriate, and dangerous web sites that may contain phishing/pharming attacks, malware such as spyware, or objectionable content that can expose your organization to legal liability. Based on automatic research tools and targeted research analysis, real-time updates enable you to apply highly-granular policies that filter web access based on 78 web content categories, over 45 million rated web sites, and more than two billion web pages - all continuously updated.

Support Contract and FortiGuard Subscription Services

The **Support Contract** and **FortiGuard Subscription Services** sections are displayed in abbreviated form within the License Information widget. A detailed version is available by going to System > Config > FortiGuard.

The Support Contract area displays the availability or status of your FortiGate unit’s support contract. The status displays can be either **Unreachable**, **Not Registered** or **Valid Contract**.

The FortiGuard Subscription Services area displays detailed information about your FortiGate unit’s support contract and FortiGuard subscription services. On this page, you can also manually update the antivirus and IPS engines.

The status icons for each section Indicates the state of the subscription service. The icon corresponds to the availability description.

- **Gray (Unreachable)** – the FortiGate unit is not able to connect to service.
- **Orange (Not Registered)** – the FortiGate unit can connect, but not subscribed.
- **Yellow (Expired)** – the FortiGate unit had a valid license that has expired.
- **Green (Valid license)** – the FortiGate unit can connect to FDN and has a registered support contract. If the Status icon is green, the expiry date also appears.

FortiGuard Analysis Service Options

Go to System > Config > FortiGuard, and expand the FortiGuard Analysis & Management Service Options.

<table>
<thead>
<tr>
<th>Account ID</th>
<th>Enter the name for the FortiGuard Analysis and Management Service that identifies the account. This is the same account information used when registering for the service.</th>
</tr>
</thead>
<tbody>
<tr>
<td>To launch the service portal, please click here</td>
<td>Select to go directly to the FortiGuard Analysis and Management Service portal web site to view logs or configuration. You can also select this to register your FortiGate unit with the FortiGuard Analysis and Management Service.</td>
</tr>
</tbody>
</table>
Antivirus and IPS

The FortiGuard network is an always updating service. That is, Fortinet employs developers around the clock, monitoring for new and mutating virus and intrusion threats. This includes grayware and signatures for application control. There are two methods of updating the virus and IPS signatures on your FortiGate unit: manually or through push updates.

Antivirus and IPS Options

Go to System > Config > FortiGuard, and expand the Antivirus and IPS Options section to configure the antivirus and IPS options for connecting and downloading definition files.

<table>
<thead>
<tr>
<th>Use override server address</th>
<th>Select to configure an override server if you cannot connect to the FDN or if your organization provides updates using their own FortiGuard server.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow Push Update</td>
<td>Select to allow updates sent automatically to your FortiGate unit when they are available.</td>
</tr>
<tr>
<td>Allow Push Update status icon</td>
<td>The status of the FortiGate unit for receiving push updates:</td>
</tr>
<tr>
<td></td>
<td>• Gray (Unreachable) - the FortiGate unit is not able to connect to push update service</td>
</tr>
<tr>
<td></td>
<td>• Yellow (Not Available) - the push update service is not available with current support license</td>
</tr>
<tr>
<td></td>
<td>• Green (Available) - the push update service is allowed.</td>
</tr>
<tr>
<td>Use override push IP and Port</td>
<td>Available only if both Use override server address and Allow Push Update are enabled.</td>
</tr>
<tr>
<td></td>
<td>Enter the IP address and port of the NAT device in front of your FortiGate unit. FDS will connect to this device when attempting to reach the FortiGate unit.</td>
</tr>
<tr>
<td></td>
<td>The NAT device must be configured to forward the FDS traffic to the FortiGate unit on UDP port 9443.</td>
</tr>
<tr>
<td>Schedule Updates</td>
<td>Select this check box to enable updates to be sent to your FortiGate unit at a specific time. For example, to minimize traffic lag times, you can schedule the update to occur on weekends or after work hours. Note that a schedule of once a week means any urgent updates will not be pushed until the scheduled time.</td>
</tr>
<tr>
<td></td>
<td>However, if there is an urgent update required, select the Update Now button.</td>
</tr>
<tr>
<td>Update Now</td>
<td>Select to manually initiate an FDN update.</td>
</tr>
<tr>
<td>Submit attack characteristics... (recommended)</td>
<td>Select to help Fortinet maintain and improve IPS signatures. The information sent to the FortiGuard servers when an attack occurs, can be used to keep the database current as variants of attacks evolve.</td>
</tr>
</tbody>
</table>

Manual updates

To manually update the signature definitions file, you need to first go to the Support web site at https://support.fortinet.com. Once logged in, select FortiGuard Service Updates from the Download area of the web page. The browser will present you the most current antivirus and IPS signature definitions which you can download.
Once downloaded to your computer, log into the FortiGate unit to load the definition file.

To load the definition file onto the FortiGate unit

1. Go to System > Config > FortiGuard.
2. Select the *Update* link for either *AV Definitions* or *IPS Definitions*.
3. Locate the downloaded file and select *OK*.

The upload may take a few minutes to complete.

Automatic updates

The FortiGate unit can be configured to request updates from the FortiGuard Distribution Network. You can configure this to be on a scheduled basis, or with push notifications.

Scheduling updates

Scheduling updates ensures that the virus and IPS definitions are downloaded to your FortiGate unit on a regular basis, ensuring that you do not forget to check for the definition files yourself. As well, by scheduling updates during off-peak hours, such as evenings or weekends, when network usage is minimal, ensures that the network activity will not suffer from the added traffic of downloading the definition files.

If you require the most up-to-date definitions as viruses and intrusions are found in the wild, the FortiGuard Distribution Network can push updates to the FortiGate units as they are developed. This ensures that your network will be protected from any breakouts of a virus within the shortest amount of time, minimizing any damaging effect that can occur. Push updates require that you have registered your FortiGate unit.

Once push updates are enabled, the next time new antivirus or IPS attack definitions are released, the FDN notifies all the FortiGate units that a new update is available. Within 60 seconds of receiving a push notification, the unit automatically requests the update from the FortiGuard servers.

To enable scheduled updates - web-based manager

1. Go to System > Config > FortiGuard.
2. Click the Expand Arrow for *AntiVirus and IPS Options*.
3. Select the *Scheduled Update* check box.
4. Select the frequency of the updates and when within that frequency.
5. Select *Apply*.

To enable scheduled updates - CLI

```
config system autoupdate schedule
  set status enable
  set frequency {every | daily | weekly}
  set time <hh:mm>
  set day <day_of_week>
end
```

Push updates

Push updates enable you to get immediate updates when new virus or intrusions have been discovered and new signatures are created. This ensures that when the latest signature is available it will be sent to the FortiGate.
When a push notification occurs, the FortiGuard server sends a notice to the FortiGate unit that there is a new signature definition file available. The FortiGate unit then initiates a download of the definition file, similar to the scheduled update.

To ensure maximum security for your network, you should have a scheduled update as well as enable the push update, in case an urgent signature is created, and your cycle of the updates only occurs weekly.

To enable push updates - web-based manager

1. Go to **System > Config > FortiGuard**.
2. Click the Expand Arrow for **Antivirus and IPS Options**.
3. Select **Allow Push Update**.
4. Select **Apply**.

To enable push updates - CLI

```
config system autoupdate push-update
    set status enable
end
```

Push IP override

If the FortiGate unit is behind another NAT device (or another FortiGate unit), to ensure it receives the push update notifications, you need to use an override IP address for the notifications. To do this, you create a virtual IP to map to the external port of the NAT device.

Generally speaking, if there are two FortiGate devices as in the diagram below, the following steps need to be completed on the FortiGate NAT device to ensure the FortiGate unit on the internal network receives the updates:

- Add a port forwarding virtual IP to the FortiGate NAT device that connects to the Internet by going to **Firewall Objects > Virtual IP**.
- Add a security policy to the FortiGate NAT device that connects to the Internet that includes the port forwarding virtual IP.
- Configure the FortiGate unit on the internal network with an override push IP and port.

On the FortiGate internal device, the virtual IP is entered as the *Use push override IP* address.
Figure 10: Using a virtual IP for a FortiGate unit behind a NAT device

To enable push update override - web-based manager
1. Go to System > Config > FortiGuard.
2. Click the Expand Arrow for Antivirus and IPS Options.
3. Select Allow Push Update.
4. Select Use push override IP.
5. Enter the virtual IP address configured on the NAT device.
6. Select Apply.

To enable push updates - CLI

```
config system autoupdate push-update
  set status enable
  set override enable
  set address <vip_address>
end
```

Web filtering

The multiple FortiGuard data centers around the world hold the entire categorized URL database and receive rating requests from customer FortiGate units typically triggered by browser based URL requests. These rating requests are responded to with the categories stored for specific URLs, the requesting FortiGate unit will then use its own local profile configuration to determine what action is appropriate to the category, that is, to blocking, monitor or permit the request. Fortinet’s development team has ensured that providing this powerful filtering capability is as simple as possible to enable.
Further, rating responses can also be cached locally on the FortiGate unit, providing a quicker response time, while easing load on the FortiGuard servers, aiding in a quicker response time for less common URL requests. This is a very effective method for common sites. Search engines and other frequently visited sites for your business can remain cached locally. Other sites less frequently visited, can be cached locally for a determined amount of time. For a site such as Google, the frequency of its access can keep it in the cache, other sites can remain in the cache up to 24 hours, or less depending on the configuration.

By default, the web filtering cache is enabled. The cache includes a time-to-live value, which is the amount of time a URL will stay in the cache before expiring. You can change this value to shorten or extend the time between 300 and 86400 seconds.

Web Filtering and Email Filtering Options

Go to System > Config > FortiGuard, and expand arrow to view Web Filtering and Email Filtering options for setting the size of the caches and ports used.

<table>
<thead>
<tr>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Filter cache TTL</td>
<td>Set the Time To Live value. This is the number of seconds the FortiGate unit will store a blocked IP or URL locally, saving time and network access traffic, checking the FortiGuard server. Once the TTL has expired, the FortiGate unit will contact an FDN server to verify a web address. The TTL must be between 300 and 86400 seconds.</td>
</tr>
<tr>
<td>Antispam cache TTL</td>
<td>Set the Time To Live value. This is the number of seconds the FortiGate unit will store a blocked IP or URL locally, saving time and network access traffic, checking the FortiGuard server. Once the TTL has expired, the FortiGate unit will contact an FDN server to verify a web address. The TTL must be between 300 and 86400 seconds.</td>
</tr>
<tr>
<td>Port Section</td>
<td>Select the port assignments for contacting the FortiGuard servers. Select the Test Availability button to verify the connection using the selected port.</td>
</tr>
<tr>
<td>To have a URL's category rating re-evaluated, please click here.</td>
<td>Select to re-evaluate a URL's category rating on the FortiGuard Web Filter service.</td>
</tr>
</tbody>
</table>

URL verification

If you discover a URL - yours or one you require access to has been incorrectly flagged as an inappropriate site, you can ask the FortiGuard team to re-evaluate the site. To do this, go to System > Config > FortiGuard, select the blue arrow for Web Filtering and Email Filtering Options and select the link for re-evaluation.

To modify the web filter cache size - web-based manager

1. Got to System > Config > FortiGuard.
2. Click the Expand Arrow for Web Filtering and Email Filtering Options.
3. Enter the TTL value for the Web filter cache.
4. Select Apply.
Email filtering

Similar to web filtering, FortiGuard data centers monitor and update email databases of known spam sources. With FortiGuard antispam enabled, the FortiGate unit verifies incoming email sender address and IPs against the database, and take the necessary action as defined within the antivirus profiles.

Further, spam source IP addresses can also be cached locally on the FortiGate unit, providing a quicker response time, while easing load on the FortiGuard servers, aiding in a quicker response time for less common email address requests.

By default, the antispam cache is enabled. The cache includes a time-to-live value, which is the amount of time an email address will stay in the cache before expiring. You can change this value to shorten or extend the time between 300 and 86400 seconds.

To modify the antispam filter cache size - web-based manager

1. Go to System > Config > FortiGuard.
2. Click the Expand Arrow for Web Filtering and Email Filtering Options.
3. Enter the TTL value for the Antispam filter cache.
4. Select Apply.

To modify the web filter cache size - CLI

```
config system fortiguard
  set webfilter-cache-ttl <integer>
end
```

Further web filtering options can be configured to block specific URLs, and allow others through. These configurations are available through the UTM > Web Filter menu. For more information, see the UTM Guide.

Security tools

The FortiGuard online center provides a number of online security tools that enable you to verify or check ratings of web sites, email addresses as well as check file for viruses. These features are available at http://www.fortiguard.com.

URL lookup

By entering a web site address, you can see if it has been rated and what category and classification it is filed as. If you find your web site or a site you commonly go to has been wrongly categorized, use this page to request the site to be re-evaluated.

http://www.fortiguard.com/webfiltering/webfiltering.html
IP and signature lookup

The IP and signature lookup enable you to check whether an IP address is blacklisted in the FortiGuard IP reputation database, or whether a URL or email address is in the signature database.

http://www.fortiguard.com/antispam/antispam.html

Online virus scanner

If you discover a suspicious file on your machine, or suspect that a program you downloaded from the internet might be malicious you can scan it using the FortiGuard online scanner. The questionable file can be uploaded from your computer to a dedicated server where it will be scanned using FortiClient Antivirus. Only one file of up to 1 MB can be checked at any one time. All files will be forwarded to our research labs for analysis.

http://www.fortiguard.com/antivirus/virusscanner.html

Malware removal tools

Tools have been developed by FortiGuard Labs to disable and remove the specific malware and related variants. Some tools have been developed to remove specific malware, often tough to remove. A universal cleaning tool, FortiCleanup, is also available for download.

The FortiCleanup is a tool developed to identify and cleanse systems of malicious rootkit files and their associated malware. Rootkits consist of code installed on a system with kernel level privileges, often used to hide malicious files, keylog and thwart detection / security techniques. The aim of this tool is to reduce the effectiveness of such malware by finding and eliminating rootkits. The tool offers a quick memory scan as well as a full system scan. FortiCleanup will not only remove malicious files, but also can cleanse registry entries, kernel module patches, and other tricks commonly used by rootkits - such as SSDT hooks and process enumeration hiding.

A license to use these applications is provided free of charge, courtesy of Fortinet.

Troubleshooting

If you are not getting FortiGuard web filtering or antispam services, there are a few things to verify communication to the FortiGuard Distribution Network (FDN) is working. Before any troubleshooting, ensure that the FortiGate unit has been registered and you or your company, has subscribed to the FortiGuard services.

Web-based manager verification

The simplest method to check that the FortiGate unit is communicating with the FDN, is to check the License Information dashboard widget. Any subscribed services should have a green check mark beside them indicating that connections are successful. Any other icon indicates a problem with the connection, or you are not subscribed to the FortiGuard services.
Figure 11: License Information widget showing FortiGuard availability

<table>
<thead>
<tr>
<th>License Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Contract</td>
</tr>
<tr>
<td>Registration</td>
</tr>
<tr>
<td>Hardware</td>
</tr>
<tr>
<td>Firmware</td>
</tr>
<tr>
<td>Enhanced Support</td>
</tr>
<tr>
<td>Comprehensive Support</td>
</tr>
<tr>
<td>FortiGuard Services</td>
</tr>
<tr>
<td>Antivirus</td>
</tr>
<tr>
<td>Intrusion Protection</td>
</tr>
<tr>
<td>Web Filtering</td>
</tr>
<tr>
<td>Email Filtering</td>
</tr>
<tr>
<td>Vulnerability Management</td>
</tr>
<tr>
<td>Analysis & Management</td>
</tr>
<tr>
<td>Virtual Domain</td>
</tr>
<tr>
<td>VDOMs Allowed</td>
</tr>
<tr>
<td>FortiClient Software</td>
</tr>
<tr>
<td>FortiClient</td>
</tr>
<tr>
<td>FortiClient Connecting/Allowed</td>
</tr>
</tbody>
</table>

Alternatively, you can view the FortiGuard connection status by going to System > Config > FortiGuard.
CLI verification

You can also use the CLI to see what FortiGuard servers are available to your FortiGate unit. Use the following CLI command to ping the FDN for a connection:

```cli
ping guard.fortinet.net
```

You can also use `diagnose debug rating` command to find out what FortiGuard servers are available:

```cli
diagnose debug rating
```

From this command, you will see output similar to the following:

```
Locale : english
License : Contract
Expiration : Sun Jul 24 20:00:00 2011
Hostname : service.fortiguard.net

--- Server List (Tue Nov 2 11:12:28 2010) ---

<table>
<thead>
<tr>
<th>IP Weight</th>
<th>RTT Flags</th>
<th>TZ</th>
<th>Packets</th>
<th>Curr Lost</th>
<th>Total Lost</th>
</tr>
</thead>
<tbody>
<tr>
<td>69.20.236.180</td>
<td>0</td>
<td>10</td>
<td>-5</td>
<td>77200</td>
<td>0</td>
</tr>
<tr>
<td>69.20.236.179</td>
<td>0</td>
<td>12</td>
<td>-5</td>
<td>52514</td>
<td>0</td>
</tr>
<tr>
<td>66.117.56.42</td>
<td>0</td>
<td>32</td>
<td>-5</td>
<td>34390</td>
<td>0</td>
</tr>
<tr>
<td>80.85.69.38</td>
<td>50</td>
<td>164</td>
<td>0</td>
<td>34430</td>
<td>0</td>
</tr>
<tr>
<td>208.91.112.194</td>
<td>81</td>
<td>223</td>
<td>D</td>
<td>42530</td>
<td>0</td>
</tr>
<tr>
<td>216.156.209.26</td>
<td>286</td>
<td>241</td>
<td>DI</td>
<td>55602</td>
<td>0</td>
</tr>
</tbody>
</table>
```
An extensive list of servers are available. Should you see a list of three to five available servers, the FortiGuard servers are responding to DNS replies to service.FortiGuard.net, but the INIT requests are not reaching FDS services on the servers.

The rating flags indicate the server status:

Table 7: FortiGuard debug rating flags

<table>
<thead>
<tr>
<th>D</th>
<th>Indicates the server was found via the DNS lookup of the hostname. If the hostname returns more than one IP address, all of them will be flagged with 'D' and will be used first for INIT requests before falling back to the other servers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Indicates the server to which the last INIT request was sent</td>
</tr>
<tr>
<td>F</td>
<td>The server has not responded to requests and is considered to have failed.</td>
</tr>
<tr>
<td>T</td>
<td>The server is currently being timed.</td>
</tr>
</tbody>
</table>

The server list is sorted first by weight and then the server with the smallest RTT is put at the top of the list, regardless of weight. When a packet is lost, that is, no response in two seconds, it will be resent to the next server in the list. The top position in the list is selected based on RTT while the other list positions are based on weight.

The weight for each server increases with failed packets and decreases with successful packets. To lower the possibility of using a faraway server, the weight is not allowed to dip below a base weight which is calculated as the difference in hours between the FortiGate unit and the server multiplied by 10. The further away the server is, the higher its base weight and the lower in the list it will appear.

Port assignment

FortiGate units contact the FortiGuard Distribution Network (FDN) for the latest list of FDN servers by sending UDP packets with typical source ports of 1027 or 1031, and destination ports of 53 or 8888. The FDN reply packets have a destination port of 1027 or 1031.

If your ISP blocks UDP packets in this port range, the FortiGate unit cannot receive the FDN reply packets. As a result, the FortiGate unit will not receive the complete FDN server list.

You can select a different source port range for the FortiGate unit to use. If your ISP blocks the lower range of UDP ports (around 1024), you can configure your FortiGate unit to use higher-numbered ports, using the CLI command...

```bash
config system global
  set ip-src-port-range <start port>-<end port>
end
```

...where the `<start port>` and `<end port>` are numbers ranging of 1024 to 25000.

For example, you could configure the FortiGate unit to not use ports lower than 2048 or ports higher than the following range:

```bash
config system global
  set ip-src-port-range 2048-20000
end
```

Trial and error may be required to select the best source port range. You can also contact your ISP to determine the best range to use.

Push updates might be unavailable if:

- there is a NAT device installed between the unit and the FDN
- your unit connects to the Internet using a proxy server.
Monitoring

With network administration, the first step is installing and configuring the FortiGate unit to be the protector of the internal network. Once the system is running efficiently, the next step is to monitor the system and network traffic, to tweak leaks and abusers as well as the overall health of the FortiGate unit(s) that provide that protection.

This chapter discusses the various methods of monitoring both the FortiGate unit and the network traffic through a range of different tools available within FortiOS.

This section includes the topics:

- Dashboard
- sFlow
- Monitor menus
- Logging
- Alert email
- SNMP
- SNMP get command syntax
- Fortinet and FortiGate MIB fields

Dashboard

The FortiOS dashboard provides a location to view real-time system information. By default, the dashboard displays the key statistics of the FortiGate unit itself, providing the memory and CPU status, as well as the health of the ports, whether they are up or down and their throughput.

Widgets

Within the dashboard is a number of smaller windows, called widgets, that provide this status information. Beyond what is visible by default, you can add a number of other widgets that display other key traffic information including application use, traffic per IP address, top attacks, traffic history and logging statistics.

You will see when you log into the FortiGate unit, there are two separate dashboards. You can add multiple dashboards to reflect what data you want to monitor, and add the widgets accordingly. Dashboard configuration is only available through the web-based manager. Administrators must have read and write privileges to customize and add widgets when in either menu. Administrators must have read privileges if they want to view the information.

To add a dashboard and widgets

1. Go to System > Dashboard.
2. Select the Dashboard menu at the top of the window and select Add Dashboard.
3. Enter a name such as Monitoring.
4. Select the Widget menu at the top of the window.
5 From the screen, select the type of information you want to add.

6 When done, select the X in the top right of the widget.

Dashboard widgets provide an excellent method to view real-time data about the events occurring on the FortiGate unit and the network. For example, by adding the Network Protocol Usage widget, you can monitor the activity of various protocols over a selected span of time. Based on that information you can add or adjust traffic shaping and/or security policies to control traffic.

![Image: You can position widgets within the dashboard frame by clicking and dragging it to a different location.]

FortiClient connections

The *License Information* widget includes information for the FortiClient connections. It displays the number of FortiClient connections allowed, and the number of users connecting. By selecting the Details link for the number of connections, you can view more information about the connecting user, including IP address, user name and type of operating system the user is connecting with.

sFlow

sFlow is a method of monitoring the traffic on your network to identify areas on the network that may impact performance and throughput. sFlow is described in http://www.sflow.org. FortiOS implements sFlow version 5. sFlow uses packet sampling to monitor network traffic. That is, an sFlow Agent captures packet information at defined intervals and sends them to an sFlow Collector for analysis, providing real-time data analysis. The information sent is only a sampling of the data for minimal impact on network throughput and performance.

The sFlow Agent is embedded in the FortiGate unit. Once configured, the FortiGate unit sends sFlow datagrams of the sampled traffic to the sFlow Collector, also called an sFlow Analyzer. The sFlow Collector receives the datagrams, and provides real-time analysis and graphing to indicate where potential traffic issues are occurring. sFlow Collector software is available from a number of third party software vendors.

sFlow data captures only a sampling of network traffic, not all traffic like the traffic logs on the FortiGate unit. Sampling works by the sFlow Agent looking at traffic packets when they arrive on an interface. A decision is made whether the packet is dropped, and sent on to its destination, or a copy is forwarded to the sFlow Collector. The sample used and its frequency are determined during configuration.

![Image: sFlow is not supported on virtual interfaces such as vdom link, ipsec, ssl.<vdom> or gre.]

The sFlow datagram sent to the Collector contains the information:

- Packet header (e.g. MAC, IPv4, IPv6, IPX, AppleTalk, TCP, UDP, ICMP)
- Sample process parameters (rate, pool etc.)
- Input/output ports
- Priority (802.1p and TOS)
- VLAN (802.1Q)
- Source/destination prefix
- Next hop address
- Source AS, Source Peer AS
- Destination AS Path
- Communities, local preference
- User IDs (TACACS/RADIUS) for source/destination
- URL associated with source/destination
- Interface statistics (RFC 1573, RFC 2233, and RFC 2358)

sFlow agents can be added to any type of FortiGate interface. sFlow isn’t supported on some virtual interfaces such as VDOM link, IPsec, gre, and ssl.<vdom>.

For more information on sFlow, Collector software and sFlow MIBs, visit www.sflow.org.

Configuration

sFlow configuration is available only from the CLI. Configuration requires two steps: enabling the sFlow Agent, and configuring the interface for the sampling information.

Enable sFlow

```
config system sflow
  set collector-ip <ip_address>
  set collector-port <port_number>
end
```

The default port for sFlow is UDP 6343. To configure in VDOM, use the commands:

```
config system vdom-sflow
  set vdom-sflow enable
  set collector-ip <ip_address>
  set collector-port <port_number>
end
```

Configure sFlow agents per interface.

```
config system interface
  edit <interface_name>
    set sflow-sampler enable
    set sample-rate <every_n_packets>
    set sample-direction [tx | rx | both]
    set polling-interval <seconds>
  end
```

Monitor menus

The Monitor menus enable you to view session and policy information and other activity occurring on your FortiGate unit. The monitors provide the details of user activity, traffic and policy usage to show live activity. Monitors are available for DHCP, routing, security policies, traffic shaping, a variety of UTM functionality, VPN, user, WiFi controllers and logging.
Logging

FortiOS provides a robust logging environment that enables you to monitor, store and report traffic information and FortiGate events including attempted log ins and hardware status. Depending on your requirements, you can log to a number of different hosts.

To configure logging in the web-based manager, go to Log & Report > Log Config > Log Setting.

To configure logging in the CLI use the commands `config log <log_location>`.

For details on configuring logging see the Logging and Reporting Guide and FortiAnalyzer Administration Guide.

FortiGate memory

Logs are saved to the internal memory by default. Inexpensive yet volatile, for basic event logs or verifying traffic, AV or spam patterns, logging to memory is a simple option. However, because logs are stored in the limited space of the internal memory, only a small amount is available for logs. As such logs can fill up and be overridden with new entries, negating the use of recursive data. This is especially true for traffic logs. Also, should the FortiGate unit be shut down or rebooted, all log information will be lost.

To change the logging options for memory, go to Log&Report > Log Config > Log Setting.

FortiGate hard disk

For those FortiGate units with an internal hard disk or SDHC card, you can store logs to this location. Efficient and local, the hard disk provides a convenient storage location. If you choose to store logs in this manner, remember to backup the log data regularly.

Configure log disk settings is performed in the CLI using the commands:

```plaintext
config log setting disk
set status enable
end
```

Further options are available when enabled to configure log file sizes, and uploading/backup events.

As well, note that the write speeds of hard disks compared to the logging of ongoing traffic may cause the dropping of log messages. As such, it is recommended that traffic logging be sent to a FortiAnalyzer or other device meant to handle large volumes of data.

Syslog server

An industry standard for collecting log messages, for off site storage. In the web-based manager, you are able to send logs to a single syslog server, however in the CLI you can configure up to three syslog servers where you can also use multiple configuration options. For example, send traffic logs to one server, antivirus logs to another. The FortiGate unit sends Syslog traffic over UDP port 514. Note that if a secure tunnel is configured for communication to a FortiAnalyzer unit, then Syslog traffic will be sent over an IPsec connection, using UDP 500/4500, protocol IP/50.

To configure a Syslog server in the web-based manager, go to Log&Report > log Config > Log Setting. In the CLI use the commands:

```plaintext
config log syslogd setting
set status enable
end
```

Further options are available when enabled to configure a different port, facility and server IP address.
For Syslog traffic, you can identify a specific port/IP address for logging traffic. Configuration of these services is performed in the CLI, using the command set source-ip. When configured, this becomes the dedicated port to send this traffic over.

For example, to set the source IP of a Syslog server to be on the DMZ1 port with an IP of 192.168.4.5, the commands are:

```
config log syslogd setting
  set status enable
  set source-ip 192.168.4.5
end
```

FortiGuard Analysis and Management service

The FortiGuard Analysis and Management Service is a subscription-based hosted service. With this service, you can have centralized management, logging, and reporting capabilities available in FortiAnalyzer and FortiManager platforms, without any additional hardware to purchase, install or maintain.

This service includes a full range of reporting, analysis and logging, firmware management and configuration revision history. It is hosted within the Fortinet global FortiGuard Network for maximum reliability and performance, and includes reporting, and drill-down analysis widgets makes it easy to develop custom views of network and security events.

The FortiGate unit sends log messages to the FortiGuard Analysis and Management service using TCP port 443. Configuration is available once a user account has been set up and confirmed. To enable the account on the FortiGate unit, go to **System > Maintenance > FortiGuard**, select the blue arrow to expand the option, and enter the account ID.

For FortiGuard Analysis and Management traffic, you can identify a specific port/IP address for logging traffic. Configuration of these services is performed in the CLI, using the command set source-ip. When configured, this becomes the dedicated port to send this traffic over.

For example, to set the source IP of the FortiGuard Analysis and Management server to be on the DMZ1 port with an IP of 192.168.4.5, the commands are:

```
config log fortiguard setting
  set status enable
  set source-ip 192.168.4.5
end
```

From the FortiGate unit, you can configure the connection and sending of log messages to be sent over an SSL tunnel to ensure log messages are sent securely. To do this, use the CLI commands to enable the encrypted connection and define the level of encryption.

```
config log fortiguard setting
  set status enable
  set enc-algorithm {default | high | low | disable}
end
```

For more information on each encryption level see “Configuring an SSL connection” on page 131.
FortiAnalyzer

The FortiAnalyzer family of logging, analyzing, and reporting appliances securely aggregate log data from Fortinet devices and other syslog-compatible devices. Using a comprehensive suite of easily-customized reports, users can filter and review records, including traffic, event, virus, attack, Web content, and email data, mining the data to determine your security stance and assure regulatory compliance. FortiAnalyzer also provides advanced security management functions such as quarantined file archiving, event correlation, vulnerability assessments, traffic analysis, and archiving of email, Web access, instant messaging and file transfer content.

The FortiGate unit sends log messages over UDP port 514 or OFTP (TCP 514). If a secure connection has been configured, log traffic is sent over UDP port 500/4500, Protocol IP/50. For more information on configuring a secure connection see “Sending logs using a secure connection” on page 130.

For FortiAnalyzer traffic, you can identify a specific port/IP address for logging traffic. Configuration of these services is performed in the CLI, using the command set source-ip. When configured, this becomes the dedicated port to send this traffic over.

For example, to set the source IP of a FortiAnalyzer unit to be on port 3 with an IP of 192.168.21.12, the commands are:

```
config log fortiguard setting
set status enable
set source-ip 192.168.21.12
end
```

Sending logs using a secure connection

From the FortiGate unit, you can configure the connection and sending of log messages over an SSL tunnel to ensure log messages are sent securely. To do this, use the CLI commands below to enable the encrypted connection and define the level of encryption.

```
You must configure the secure tunnel on both ends of the tunnel, the FortiGate unit and the FortiAnalyzer unit.

This configuration is for FortiAnalyzer OS version 4.0 MR2 or lower. For version 40 MR3, see “Configuring an SSL connection” on page 131.
```

To configure a secure connection to the FortiAnalyzer unit

On the FortiAnalyzer unit, enter the commands:

```
config log device
edit <device_name>
set secure psk
set psk <name_of_IPSec_tunnel>
set id <fortigate_device_name_on_the_fortianalyzer>
end
```

To configure a secure connection on the FortiGate unit

On the FortiGate CLI, enter the commands:

```
config log fortianalyzer setting
set status enable
set server <ip_address>
set local
set localid <name_of_IPSec_tunnel>
end
```
Configuring an SSL connection

With FortiAnalyzer 4.0 MR3 and FortiOS 4.0 MR3, you can configure an SSL connection between the two devices, and select the encryption level.

Use the CLI commands to configure the encryption connection:

```
config log fortianalyzer setting
  set status enable
  set enc-algorithm {default* | high | low | disable}
end
```

The default encryption automatically sets high and medium encryption algorithms. Algorithms used for high, medium, and low follow openssl definitions:

- **High** - Key lengths larger than 128 bits, and some cipher suites with 128-bit keys.
- **Medium** - Key strengths of 128 bit encryption.
 Algorithm are:RC4-SHA:RC4-MD5:RC4-MD
- **Low** - Key strengths of 64 or 56 bit encryption algorithms but excluding export cipher suites
 Algorithms: EDH-RSA-DES-CDBC-SHA; DES-CBC-SHA; DES-CBC-MD5.

If you want to use an IPSec tunnel to connect to the FortiAnalyzer unit, you need to first disable the enc-algorithm:

```
config log fortianalyzer setting
  set status enable
  set enc-algorithm disable
end
```

Then set the IPSec encryption:

```
set encrypt enable
set psksecret <preshared_IPSec_tunnel_key>
end
```

Alert email

As an administrator, you want to be certain you can respond quickly to issues occurring on your network or on the FortiGate unit. Alert email provides an efficient and direct method of notifying an administrator of events. By configuring alert messages, you can define the threshold when a problem becomes critical and needs attention. When this threshold is reached, the FortiGate unit will send an email to one or more individuals notifying them of the issue.

In the following example, the FortiGate unit is configured to send email to two administrators (admin1 and admin2) when multiple intrusions are detected every two minutes. The FortiGate unit has its own email address on the mail server.
To configure alert email - web-based manager

1. Go to Log&Report > Log Config > Alert E-mail.
2. Enter the information:

<table>
<thead>
<tr>
<th>SMTP Server</th>
<th>Enter the address or name of the email server. For example, smtp.example.com.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email from</td>
<td>fortigate@example.com</td>
</tr>
<tr>
<td>Email to</td>
<td>admin1@example.com, admin2@example.com</td>
</tr>
<tr>
<td>Authentication</td>
<td>Enable authentication if required by the email server.</td>
</tr>
<tr>
<td>SMTP User</td>
<td>FortiGate</td>
</tr>
<tr>
<td>Password</td>
<td>**********************</td>
</tr>
<tr>
<td>Interval Time</td>
<td>2</td>
</tr>
</tbody>
</table>

3. For the Interval Time, enter 2.
4. Select Intrusion Detected.
5. Select Apply.

To configure alert email - CLI

```plaintext
config system alert email
  set port 25
  set server smtp.example.com
  set authenticate enable
  set username FortiGate
  set password ****************
end
config alertemail setting
  set username fortigate@example.com
  set mailto1 admin1@example.com
  set mailto2 admin2@example.com
  set filter category
  set IPS-logs enable
end
```

SNMP

Simple Network Management Protocol (SNMP) enables you to monitor hardware on your network. You can configure the hardware, such as the FortiGate SNMP agent, to report system information and send traps (alarms or event messages) to SNMP managers. An SNMP manager, or host, is typically a computer running an application that can read the incoming trap and event messages from the agent and send out SNMP queries to the SNMP agents. A FortiManager unit can act as an SNMP manager, or host, to one or more FortiGate units. FortiOS supports SNMP using IPv4 and IPv6 addressing.

By using an SNMP manager, you can access SNMP traps and data from any FortiGate interface or VLAN sub interface configured for SNMP management access. Part of configuring an SNMP manager is to list it as a host in a community on the FortiGate unit it will be monitoring. Otherwise the SNMP monitor will not receive any traps from that FortiGate unit, or be able to query that unit.
The FortiGate SNMP implementation is read-only. SNMP v1, v2c, and v3 compliant SNMP managers have read-only access to FortiGate system information through queries and can receive trap messages from the FortiGate unit.

To monitor FortiGate system information and receive FortiGate traps, you must first compile the Fortinet and FortiGate Management Information Base (MIB) files. A MIB is a text file that describes a list of SNMP data objects that are used by the SNMP manager. These MIBs provide information the SNMP manager needs to interpret the SNMP trap, event, and query messages sent by the FortiGate unit SNMP agent. FortiGate core MIB files are available on the Customer Support web site.

The Fortinet implementation of SNMP includes support for most of RFC 2665 (Ethernet-like MIB) and most of RFC 1213 (MIB II). For more information, see “Fortinet MIBs” on page 138. RFC support for SNMP v3 includes Architecture for SNMP Frameworks (RFC 3411), and partial support of User-based Security Model (RFC 3414).

SNMP traps alert you to events that occur such as an a full log disk or a virus detected. For more information about SNMP traps, see “Fortinet and FortiGate traps” on page 140.

SNMP fields contain information about the FortiGate unit, such as CPU usage percentage or the number of sessions. This information is useful for monitoring the condition of the unit on an ongoing basis and to provide more information when a trap occurs. For more information about SNMP fields, see “Fortinet and FortiGate MIB fields” on page 143.

The FortiGate SNMP v3 implementation includes support for queries, traps, authentication, and privacy. Authentication and encryption are configured in the CLI. See the system snmp user command in the FortiGate CLI Reference.

SNMP configuration settings

Before a remote SNMP manager can connect to the FortiGate agent, you must configure one or more FortiGate interfaces to accept SNMP connections by going to System > Network > Interface. Select the interface, and in the Administrative Access, select SNMP.

When the FortiGate unit is in virtual domain mode, SNMP traps can only be sent on interfaces in the management virtual domain. Traps cannot be sent over other interfaces.

IPv6 is supported for SNMP configuration on FortiGate units running FortiOS 4.0 MR3.

To configure SNMP settings, go to System > Config > SNMP.

<table>
<thead>
<tr>
<th>SNMP Agent</th>
<th>Select to enable SNMP communication.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Enter descriptive information about the FortiGate unit. The description can be up to 35 characters.</td>
</tr>
<tr>
<td>Location</td>
<td>Enter the physical location of the FortiGate unit. The system location description can be up to 35 characters long.</td>
</tr>
<tr>
<td>Contact</td>
<td>Enter the contact information for the person responsible for this FortiGate unit. The contact information can be up to 35 characters.</td>
</tr>
</tbody>
</table>

SNMP v1/v2c section

To create a new SNMP community, see New SNMP Community page.

| Community Name | The name to identify the community. |
SNMP Monitoring

Queries	Indicates whether queries protocols (v1 and v2c) are enabled or disabled. A green checkmark indicates queries are enabled; a gray x indicates queries are disabled. If one query is disabled and another one enabled, there will still be a green checkmark.
Traps	Indicates whether trap protocols (v1 and v2c) are enabled or disabled. A green checkmark indicates traps are enabled; a gray x indicates traps are disabled. If one query is disabled and another one enabled, there will still be a green checkmark.
Enable	Select the check box to enable or disable the community.

SNMP v3 section

To create a new SNMP community, see [Create New SNMP V3 User](#).

User Name	The name of the SNMPv3 user.
Security Level	The security level of the user.
Notification Host	The IP address or addresses of the host.
Queries	Indicates whether queries are enabled or disabled. A green checkmark indicates queries are enabled; a gray x indicates queries are disabled.

New SNMP Community page

| **Community Name** | Enter a name to identify the SNMP community. |

Hosts (section)

IP Address	Enter the IP address and Identify the SNMP managers that can use the settings in this SNMP community to monitor the FortiGate unit. You can also set the IP address to 0.0.0.0 to so that any SNMP manager can use this SNMP community.
Interface	Optionally select the name of the interface that this SNMP manager uses to connect to the FortiGate unit. You only have to select the interface if the SNMP manager is not on the same subnet as the FortiGate unit. This can occur if the SNMP manager is on the Internet or behind a router. In virtual domain mode, the interface must belong to the management VDOM to be able to pass SNMP traps.
Delete	Removes an SNMP manager from the list within the Hosts section.
Add	Select to add a blank line to the Hosts list. You can add up to eight SNMP managers to a single community.

Queries (section)

| **Protocol** | The SNMP protocol. In the v1 row, this means that the settings are for SNMP v1. In the v2c row, this means that the settings are for SNMP v2c. |
Monitoring SNMP

| Port | Enter the port number (161 by default) that the SNMP managers in this community use for SNMP v1 and SNMP v2c queries to receive configuration information from the FortiGate unit. Select the Enable check box to activate queries for each SNMP version.

Note: The SNMP client software and the FortiGate unit must use the same port for queries. |
| Enable | Select to enable that SNMP protocol |

Traps (section)

| Protocol | The SNMP protocol. In the v1 row, this means that the settings are for SNMP v1. In the v2c row, this means that the settings are for SNMP v2c. |
| Local | Enter the remote port numbers (port 162 for each by default) that the FortiGate unit uses to send SNMP v1 or SNMP v2c traps to the SNMP managers in this community. Select the Enable check box to activate traps for each SNMP version.

Note: The SNMP client software and the FortiGate unit must use the same port for traps. |
| Remote | Enter the remote port number (port 162 is default) that the FortiGate unit uses to send SNMP v1 or v2c traps to the SNMP managers in this community.

Note: The SNMP client software and the FortiGate unit must use the same port for queries. |
| Enable | Select to activate traps for each SNMP version. |

SNMP Event

| CPU Overusage | traps sensitivity is slightly reduced, by spreading values out over 8 polling cycles. This prevents sharp spikes due to CPU intensive short-term events such as changing a policy.

Power Supply Failure event trap is available only on some models.

AMC interfaces enter bypass mode event trap is available only on models that support AMC modules. |
| Enable | Select to enable the SNMP event. |

Create New SNMP V3 User

User Name	Enter the name of the user.
Security Level	Select the type of security level the user will have.
Notification Host	Enter the IP address of the notification host. If you want to add more than one host, after entering the IP address of the first host, select the plus sign to add another host.
Enable Query	Select to enable or disable the query. By default, the query is enabled.
Port	Enter the port number in the field.
Events	Select the SNMP events that will be associated with that user.
Gigabit interfaces

When determining the interface speed of a FortiGate unit with a 10G interface, the IF-MIB.ifSpeed may not return the correct value. IF-MIB.ifSpeed is a 32-bit gauge used to report interface speeds in bits/second, and cannot convert to a 64-bit value. The 32-bit counter wrap the output too fast to be accurate.

In this case, you can use the value ifHighSpeed. It reports interface speeds in megabits/second. This ensures that 10Gb interfaces report the correct value.

SNMP agent

You need to first enter information and enable the FortiGate SNMP Agent. Enter information about the FortiGate unit to identify it so that when your SNMP manager receives traps from the FortiGate unit, you will know which unit sent the information.

To configure the SNMP agent - web-based manager
1. Go to System > Config > SNMP.
2. Select Enable for the SNMP Agent.
3. Enter a descriptive name for the agent.
4. Enter the location of the FortiGate unit.
5. Enter a contact or administrator for the SNMP Agent or FortiGate unit.
6. Select Apply.

To configure SNMP agent - CLI

```
config system snmp sysinfo
set status enable
set contact-info <contact_information>
set description <description_of_FortiGate>
set location <FortiGate_location>
end
```

SNMP community

An SNMP community is a grouping of devices for network administration purposes. Within that SNMP community, devices can communicate by sending and receiving traps and other information. One device can belong to multiple communities, such as one administrator terminal monitoring both a firewall SNMP and a printer SNMP community.

Add SNMP communities to your FortiGate unit so that SNMP managers can connect to view system information and receive SNMP traps.

You can add up to three SNMP communities. Each community can have a different configuration for SNMP queries and traps. Each community can be configured to monitor the FortiGate unit for a different set of events. You can also add the IP addresses of up to 8 SNMP managers to each community.

To add an SNMP v1/v2c community - web-based manager
1. Go to System > Config > SNMP.
2. In the SNMP v1/v2c area, select Create New.

When the FortiGate unit is in virtual domain mode, SNMP traps can only be sent on interfaces in the management virtual domain. Traps cannot be sent over other interfaces.
3 Enter a Community Name.

4 Enter the IP address and Identify the SNMP managers that can use the settings in this SNMP community to monitor the FortiGate unit.

5 Select the interface if the SNMP manager is not on the same subnet as the FortiGate unit.

6 Enter the Port number that the SNMP managers in this community use for SNMP v1 and SNMP v2c queries to receive configuration information from the FortiGate unit. Select the Enable check box to activate queries for each SNMP version.

7 Enter the Local and Remote port numbers that the FortiGate unit uses to send SNMP v1 and SNMP v2c traps to the SNMP managers in this community.

8 Select the Enable check box to activate traps for each SNMP version.

9 Select OK.

To add an SNMP v1/v2c community - CLI

```bash
config system snmp community
edit <index_number>
    set events <events_list>
    set name <community_name>
    set query-v1-port <port_number>
    set query-v1-status {enable | disable}
    set query-v2c-port <port_number>
    set query-v2c-status {enable | disable}
    set status {enable | disable}
    set trap-v1-lport <port_number>
    set trap-v1-rport <port_number>
    set trap-v1-status {enable | disable}
    set trap-v2c-lport <port_number>
    set trap-v2c-rport <port_number>
    set trap-v2c-status {enable | disable}
end
```

To add an SNMP v3 community - web-based manager

1 Go to System > Config > SNMP.

2 In the SNMP v3 area, select Create New.

3 Enter a User Name.

4 Select a Security Level and associated authorization algorithms.

5 Enter the IP address of the Notification Host SNMP managers that can use the settings in this SNMP community to monitor the FortiGate unit.

6 Enter the Port number that the SNMP managers in this community use to receive configuration information from the FortiGate unit. Select the Enable check box to activate queries for each SNMP version.

7 Select the Enable check box to activate traps.

8 Select OK.

To add an SNMP v3 community - CLI

```bash
config system snmp user
edit <index_number>
    set security-level [auth-priv | auth-no-priv | no-auth-no-priv]
```
Enabling on the interface

Before a remote SNMP manager can connect to the FortiGate agent, you must configure one or more FortiGate interfaces to accept SNMP connections.

To configure SNMP access - web-based manager

1. Go to *System > Network > Interface.*
2. Choose an interface that an SNMP manager connects to and select *Edit.*
3. In *Administrative Access,* select *SNMP.*
4. Select *OK.*

To configure SNMP access - CLI

```
config system interface
edit <interface_name>
  set allowaccess snmp
end
```

When using the `allowaccess` command to add SNMP, you need to also include any other access for the interface. This command will only use what is entered. That is, if you had HTTPS and SSH enabled before, these will be disabled if only the above command is used. In this case, for the allow access command, enter

```
set allowaccess https ssh snmp.
```

Fortinet MIBs

The FortiGate SNMP agent supports Fortinet proprietary MIBs as well as standard RFC 1213 and RFC 2665 MIBs. RFC support includes support for the parts of RFC 2665 (Ethernet-like MIB) and the parts of RFC 1213 (MIB II) that apply to FortiGate unit configuration.

There are two MIB files for FortiGate units - the Fortinet MIB, and the FortiGate MIB. The Fortinet MIB contains traps, fields and information that is common to all Fortinet products. The FortiGate MIB contains traps, fields and information that is specific to FortiGate units. Each Fortinet product has its own MIB. If you use other Fortinet products you will need to download their MIB files as well. Both MIB files are used for FortiOS and FortiOS Carrier; there are no additional traps for the Carrier version of the operating system.

The Fortinet MIB and FortiGate MIB along with the two RFC MIBs are listed in tables in this section. You can download the two FortiGate MIB files from Fortinet Customer Support. The Fortinet MIB contains information for Fortinet products in general. the Fortinet FortiGate MIB includes the system information for The FortiGate unit and version of FortiOS. Both files are required for proper SNMP data collection.

To download the MIB files

1. Login to the Customer Support web site at *support.fortinet.com.*
2. Go to *Download > Firmware Images.*
3. Select *FortiGate > v4.00 > Core MIB.*
4. Select and download the Fortinet core MIB file.
5. Move up one directory level.
6. Select the firmware version, revision and patch (if applicable).
7. Select the MIB directory.
8. Select and download the Fortinet FortiGate MIB file.

Your SNMP manager may already include standard and private MIBs in a compiled database that is ready to use. You must add the Fortinet proprietary MIB to this database to have access to the Fortinet specific information.

There were major changes to the MIB files between v3.0 and v4.0. You need to use the new MIBs for v4.0 or you may mistakenly access the wrong traps and fields.

MIB files are updated for each version of FortiOS. When upgrading the firmware ensure that you updated the Fortinet FortiGate MIB file as well.

Table 8: Fortinet MIBs

<table>
<thead>
<tr>
<th>MIB file name or RFC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORTINET-CORE-MIB.mib</td>
<td>The Fortinet MIB includes all system configuration information and trap information that is common to all Fortinet products. Your SNMP manager requires this information to monitor FortiGate unit configuration settings and receive traps from the FortiGate SNMP agent. For more information, see “Fortinet and FortiGate traps” on page 140 and “Fortinet and FortiGate MIB fields” on page 143.</td>
</tr>
<tr>
<td>FORTINET-FORTIGATE-MIB.mib</td>
<td>The FortiGate MIB includes all system configuration information and trap information that is specific to FortiGate units. Your SNMP manager requires this information to monitor FortiGate configuration settings and receive traps from the FortiGate SNMP agent. FortiManager systems require this MIB to monitor FortiGate units. For more information, see “Fortinet and FortiGate traps” on page 140 and “Fortinet and FortiGate MIB fields” on page 143.</td>
</tr>
</tbody>
</table>
| RFC-1213 (MIB II) | The FortiGate SNMP agent supports MIB II groups with these exceptions.
- No support for the EGP group from MIB II (RFC 1213, section 3.11 and 6.10).
- Protocol statistics returned for MIB II groups (IP/ICMP/TCP/UDP/etc.) do not accurately capture all FortiGate traffic activity. More accurate information can be obtained from the information reported by the Fortinet MIB. |
| RFC-2665 (Ethernet-like MIB) | The FortiGate SNMP agent supports Ethernet-like MIB information. FortiGate SNMP does not support for the dot3Tests and dot3Errors groups. |
SNMP get command syntax

Normally, to get configuration and status information for a FortiGate unit, an SNMP manager would use an SNMP get commands to get the information in a MIB field. The SNMP get command syntax would be similar to:

```bash
snmpget -v2c -c <community_name> <address_ipv4> {<OID> | <MIB_field>}
```

...where...

- `<community_name>` is an SNMP community name added to the FortiGate configuration. You can add more than one community name to a FortiGate SNMP configuration. The most commonly used community name is `public`.
- `<address_ipv4>` is the IP address of the FortiGate interface that the SNMP manager connects to.
- `{<OID> | <MIB_field>}` is the object identifier (OID) for the MIB field or the MIB field name itself.

The SNMP get command gets firmware version running on the FortiGate unit. The community name is `public`. The IP address of the interface configured for SNMP management access is `10.10.10.1`. The firmware version MIB field is `fgSysVersion` and the OID for this MIB field is `1.3.6.1.4.1.12356.101.4.1.1`. The first command uses the MIB field name and the second uses the OID:

```bash
snmpget -v2c -c public 10.10.10.1 fgSysVersion
snmpget -v2c -c public 10.10.10.1 1.3.6.1.4.1.12356.101.4.1.1
```

See also

Fortinet and FortiGate traps

An SNMP manager can request information from the Fortinet device’s SNMP agent, or that agent can send traps when an event occurs. Traps are a method used to inform the SNMP manager that something has happened or changed on the Fortinet device.

To receive FortiGate device SNMP traps, you must load and compile the `FORTINET-CORE-MIB` and `FORTINET-FORTIGATE-MIB` files into your SNMP manager. Traps sent include the trap message as well as the FortiGate unit serial number (`fnSysSerial`) and hostname (`sysName`).

The tables in this section include information about SNMP traps and variables. These tables have been included to help you locate the object identifier number (OID), trap message, and trap description of the Fortinet trap or variable you need.

The name of the table indicates if the trap is found in the Fortinet MIB or the FortiGate MIB. The Trap Message column includes the message included with the trap as well as the SNMP MIB field name to help locate the information about the trap. Traps starting with `fn` such as `fnTrapCpuThreshold` are defined in the Fortinet MIB. Traps starting with `fg` such as `fgTrapAvVirus` are defined in the FortiGate MIB.

The object identifier (OID) is made up of the number at the top of the table with the index added to the end. For example if the OID is `1.3.6.1.4.1.12356.101.2.0` and the index is 4, the full OID is `1.3.6.1.4.1.12356.101.2.0.4`. The OID and the name of the object are how SNMP managers refer to fields and traps from the Fortinet and FortiGate MIBs.

Indented rows are fields that are part of the message or table associated with the preceding row.
The tables include:

- **Generic Fortinet traps (OID 1.3.6.1.4.1.12356.101.3.0)**
- **System traps (OID1.3.6.1.4.1.12356.1.3.0)**
- **FortiGate VPN traps (OID1.3.6.1.4.1.12356.1.3.0)**
- **FortiGate IPS traps (OID1.3.6.1.4.1.12356.1.3.0)**
- **FortiGate antivirus traps (OID1.3.6.1.4.1.12356.1.3.0)**
- **FortiGate HA traps (OID1.3.6.1.4.1.12356.1.3.0)**

Table 9: Generic Fortinet traps (OID 1.3.6.1.4.1.12356.101.3.0)

<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
</tr>
<tr>
<td>.2</td>
</tr>
<tr>
<td>.3</td>
</tr>
<tr>
<td>.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trap message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ColdStart</td>
<td>Standard traps as described in RFC 1215.</td>
</tr>
<tr>
<td>WarmStart</td>
<td></td>
</tr>
<tr>
<td>LinkUp</td>
<td></td>
</tr>
<tr>
<td>LinkDown</td>
<td></td>
</tr>
</tbody>
</table>

Table 10: System traps (OID1.3.6.1.4.1.12356.1.3.0)

<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>.101</td>
</tr>
<tr>
<td>.102</td>
</tr>
<tr>
<td>.103</td>
</tr>
<tr>
<td>.104</td>
</tr>
<tr>
<td>.105</td>
</tr>
<tr>
<td>.106</td>
</tr>
<tr>
<td>.201</td>
</tr>
<tr>
<td>.999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trap message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU usage high</td>
<td>CPU usage exceeds 80%. This threshold can be set in the CLI using config system snmp sysinfo, set trap-high-cpu-threshold.</td>
</tr>
<tr>
<td>Memory low</td>
<td>Memory usage exceeds 90%. This threshold can be set in the CLI using config system snmp sysinfo, set trap-low-memory-threshold.</td>
</tr>
<tr>
<td>Log disk too full</td>
<td>Log disk usage has exceeded the configured threshold. Only available on devices with log disks. This threshold can be set in the CLI using config system snmp sysinfo, set trap-log-full-threshold.</td>
</tr>
<tr>
<td>Temperature too high</td>
<td>A temperature sensor on the device has exceeded its threshold. Not all devices have thermal sensors. See manual for specifications.</td>
</tr>
<tr>
<td>Voltage outside acceptable range</td>
<td>Power levels have fluctuated outside of normal levels. Not all devices have voltage monitoring instrumentation.</td>
</tr>
<tr>
<td>Power supply failure</td>
<td>Power supply failure detected. Not available on all models. Available on some devices which support redundant power supplies.</td>
</tr>
<tr>
<td>Interface IP change</td>
<td>The IP address for an interface has changed. The trap message includes the name of the interface, the new IP address and the serial number of the Fortinet unit. You can use this trap to track interface IP address changes for interfaces with dynamic IP addresses set using DHCP or PPPoE.</td>
</tr>
<tr>
<td>Diagnostic trap</td>
<td>This trap is sent for diagnostic purposes. It has an OID index of .999.</td>
</tr>
</tbody>
</table>

FortiOS™ Handbook v3: System Administration
01-434-142188-20120111
http://docs.fortinet.com/
SNMP get command syntax

Monitoring

Table 11: **FortiGate VPN traps (OID1.3.6.1.4.1.12356.1.3.0)**

<table>
<thead>
<tr>
<th>Index</th>
<th>Trap message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.301</td>
<td>VPN tunnel is up (fgTrapVpnTunUp)</td>
<td>An IPSec VPN tunnel has started.</td>
</tr>
<tr>
<td>.302</td>
<td>VPN tunnel down (fgTrapVpnTunDown)</td>
<td>An IPSec VPN tunnel has shut down.</td>
</tr>
<tr>
<td></td>
<td>Local gateway address (fgVpnTrapLocalGateway)</td>
<td>Address of the local side of the VPN tunnel. This information is associated with both of the VPN tunnel traps. (OID1.3.6.1.4.1.12356.101.12.3.2)</td>
</tr>
<tr>
<td></td>
<td>Remote gateway address (fgVpnTrapRemoteGateway)</td>
<td>Address of remote side of the VPN tunnel. This information is associated with both of the VPN tunnel traps. (OID1.3.6.1.4.1.12356.101.12.3.2)</td>
</tr>
</tbody>
</table>

Table 12: **FortiGate IPS traps (OID1.3.6.1.4.1.12356.1.3.0)**

<table>
<thead>
<tr>
<th>Index</th>
<th>Trap message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.503</td>
<td>IPS Signature (fgTrapIpsSignature)</td>
<td>IPS signature detected.</td>
</tr>
<tr>
<td>.504</td>
<td>IPS Anomaly (fgTrapIpsAnomaly)</td>
<td>IPS anomaly detected.</td>
</tr>
<tr>
<td>.505</td>
<td>IPS Package Update (fgTrapIpsPkgUpdate)</td>
<td>The IPS signature database has been updated.</td>
</tr>
<tr>
<td></td>
<td>(fgIpsTrapSigId)</td>
<td>ID of IPS signature identified in trap. (OID 1.3.6.1.4.1.12356.101.9.3.1)</td>
</tr>
<tr>
<td></td>
<td>(fgIpsTrapSrcIp)</td>
<td>IP Address of the IPS signature trigger. (OID 1.3.6.1.4.1.12356.101.9.3.2)</td>
</tr>
<tr>
<td></td>
<td>(fgIpsTrapSigMsg)</td>
<td>Message associated with IPS event. (OID 1.3.6.1.4.1.12356.101.9.3.3)</td>
</tr>
</tbody>
</table>

Table 13: **FortiGate antivirus traps (OID1.3.6.1.4.1.12356.1.3.0)**

<table>
<thead>
<tr>
<th>Index</th>
<th>Trap message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.601</td>
<td>Virus detected (fgTrapAvVirus)</td>
<td>The antivirus engine detected a virus in an infected file from an HTTP or FTP download or from an email message.</td>
</tr>
<tr>
<td>.602</td>
<td>Oversize file/email detected (fgTrapAvOversize)</td>
<td>The antivirus scanner detected an oversized file.</td>
</tr>
<tr>
<td>.603</td>
<td>Filename block detected (fgTrapAvPattern)</td>
<td>The antivirus scanner blocked a file that matched a known virus pattern.</td>
</tr>
<tr>
<td>.604</td>
<td>Fragmented file detected (fgTrapAvFragmented)</td>
<td>The antivirus scanner detected a fragmented file or attachment.</td>
</tr>
<tr>
<td>.605</td>
<td>(fgTrapAvEnterConserve)</td>
<td>The AV engine entered conservation mode due to low memory conditions.</td>
</tr>
</tbody>
</table>
Monitoring Fortinet and FortiGate MIB fields

The FortiGate MIB contains fields reporting the current FortiGate unit status information. The following tables list the names of the MIB fields and describe the status information available for each one. You can view more details about the information available from all Fortinet and FortiGate MIB fields by compiling the FORTINET-CORE-MIB.mib and FORTINET-FORTIGATE-MIB.mib files into your SNMP manager and browsing the MIB fields on your computer.

To help locate a field, the object identifier (OID) number for each table of fields has been included. The OID number for a field is that field’s position within the table, starting at 0. For example fnSysVersion has an OID of 1.3.6.1.4.1.12356.2.

Fortinet MIB

Table 13: FortiGate antivirus traps (OID1.3.6.1.4.1.12356.1.3.0)

<table>
<thead>
<tr>
<th>Index</th>
<th>Trap message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.606</td>
<td>(fgTrapAvBypass)</td>
<td>The AV scanner has been bypassed due to conservation mode.</td>
</tr>
<tr>
<td>.607</td>
<td>(fgTrapAvOversizePass)</td>
<td>An oversized file has been detected, but has been passed due to configuration.</td>
</tr>
<tr>
<td>.608</td>
<td>(fgTrapAvOversizeBlock)</td>
<td>An oversized file has been detected, and has been blocked.</td>
</tr>
<tr>
<td></td>
<td>(fgAvTrapVirName)</td>
<td>The virus name that triggered the event. (OID1.3.6.1.4.1.12356.101.8.3.1)</td>
</tr>
</tbody>
</table>

Table 14: FortiGate HA traps (OID1.3.6.1.4.1.12356.1.3.0)

<table>
<thead>
<tr>
<th>Index</th>
<th>Trap message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.401</td>
<td>HA switch</td>
<td>The specified cluster member has switched from a slave role to a master role.</td>
</tr>
<tr>
<td>.402</td>
<td>HA State Change</td>
<td>The trap sent when the HA cluster member changes its state.</td>
</tr>
<tr>
<td>.403</td>
<td>HA Heartbeat Failure</td>
<td>The heartbeat failure count has exceeded the configured threshold.</td>
</tr>
<tr>
<td>.404</td>
<td>HA Member Unavailable</td>
<td>An HA member becomes unavailable to the cluster.</td>
</tr>
<tr>
<td>.405</td>
<td>HA Member Available</td>
<td>An HA member becomes available to the cluster.</td>
</tr>
<tr>
<td></td>
<td>(fgHaTrapMemberSerial)</td>
<td>Serial number of an HA cluster member. Used to identify the origin of a trap when a cluster is configured. (OID1.3.6.1.4.1.12356.101.13.3.1)</td>
</tr>
</tbody>
</table>

Table 15: OIDs for the Fortinet-Core-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fnSystem</td>
<td>1.3.6.1.4.1.12356.100.1.1</td>
<td></td>
</tr>
</tbody>
</table>
Table 15: OIDs for the Fortinet-Core-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fnSysSerial</td>
<td>1.3.6.1.4.1.12356.100.1.1.1</td>
<td>Device serial number. This is the same serial number as given in the ENTITY-MIB tables for the base entity.</td>
</tr>
<tr>
<td>fnMgmt</td>
<td>.3.6.1.4.1.12356.100.1.2</td>
<td></td>
</tr>
<tr>
<td>fnMgmtLanguage</td>
<td>1.3.6.1.4.1.12356.100.1.2.1</td>
<td>Language used for administration interfaces.</td>
</tr>
<tr>
<td>fnAdmin</td>
<td>1.3.6.1.4.1.12356.100.1.2.100</td>
<td>The number of admin accounts in fnAdminTable.</td>
</tr>
<tr>
<td>fnAdminNumber</td>
<td>1.3.6.1.4.1.12356.100.1.2.100.1</td>
<td></td>
</tr>
<tr>
<td>fnAdminTable</td>
<td>1.3.6.1.4.1.12356.100.1.2.100.2</td>
<td>A table of administrator accounts on the device. This table is intended to be extended with platform specific information.</td>
</tr>
<tr>
<td>fnAdminEntry</td>
<td>1.3.6.1.4.1.12356.100.1.2.100.2.1</td>
<td>An entry containing information applicable to a particular admin account.</td>
</tr>
<tr>
<td>fnAdminIndex</td>
<td>1.3.6.1.4.1.12356.100.1.2.100.2.1.1</td>
<td>An index uniquely defining an administrator account within the fnAdminTable.</td>
</tr>
<tr>
<td>fnAdminName</td>
<td>1.3.6.1.4.1.12356.100.1.2.100.2.1.2</td>
<td>The user-name of the specified administrator account.</td>
</tr>
<tr>
<td>fnAdminAddrType</td>
<td>1.3.6.1.4.1.12356.100.1.2.100.2.1.3</td>
<td>The type of address stored in fnAdminAddr, in compliance with INET-ADDRESS-MIB</td>
</tr>
<tr>
<td>fnAdminAddr</td>
<td>1.3.6.1.4.1.12356.100.1.2.100.2.1.4</td>
<td>The address prefix identifying where the administrator account can be used from, typically an IPv4 address. The address type/format is determined by fnAdminAddrType.</td>
</tr>
<tr>
<td>fnAdminMask</td>
<td>1.3.6.1.4.1.12356.100.1.2.100.2.1.5</td>
<td>The address prefix length (or network mask) applied to the fnAdminAddr to determine the subnet or host the administrator can access the device from.</td>
</tr>
<tr>
<td>fnTraps</td>
<td>1.3.6.1.4.1.12356.100.1.3</td>
<td></td>
</tr>
<tr>
<td>fnTrapsPrefix</td>
<td>1.3.6.1.4.1.12356.100.1.3.0</td>
<td>Indicates that the CPU usage has exceeded the configured threshold.</td>
</tr>
<tr>
<td>fnTrapCpuThreshold</td>
<td>1.3.6.1.4.1.12356.100.1.3.0.101</td>
<td></td>
</tr>
</tbody>
</table>
Table 15: OIDs for the Fortinet-Core-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fnTrapMemThreshold</td>
<td>1.3.6.1.4.1.12356.100.1.3.0.102</td>
<td>Indicates memory usage has exceeded the configured threshold.</td>
</tr>
<tr>
<td>fnTrapLogDiskThreshold</td>
<td>1.3.6.1.4.1.12356.100.1.3.0.103</td>
<td>Log disk usage has exceeded the configured threshold. Only available on devices with log disks.</td>
</tr>
<tr>
<td>fnTrapTempHigh</td>
<td>1.3.6.1.4.1.12356.100.1.3.0.104</td>
<td>A temperature sensor on the device has exceeded its threshold. Not all devices have thermal sensors. See manual for specifications.</td>
</tr>
<tr>
<td>fnTrapVoltageOutOfRange</td>
<td>1.3.6.1.4.1.12356.100.1.3.0.105</td>
<td>Power levels have fluctuated outside of normal levels. Not all devices have voltage monitoring instrumentation.</td>
</tr>
<tr>
<td>fnTrapPowerSupplyFailure</td>
<td>1.3.6.1.4.1.12356.100.1.3.0.106</td>
<td>Power supply failure detected. Not available on all models. Available on some devices which support redundant power supplies. See manual for specifications.</td>
</tr>
<tr>
<td>fnTrapIpChange</td>
<td>1.3.6.1.4.1.12356.100.1.3.0.201</td>
<td>Indicates that the IP address of the specified interface has been changed.</td>
</tr>
<tr>
<td>fnTrapTest</td>
<td>1.3.6.1.4.1.12356.100.1.3.0.999</td>
<td>Trap sent for diagnostic purposes by an administrator.</td>
</tr>
<tr>
<td>fnTrapObjects</td>
<td>1.3.6.1.4.1.12356.100.1.3.1</td>
<td></td>
</tr>
<tr>
<td>fnGenTrapMsg</td>
<td>1.3.6.1.4.1.12356.100.1.3.1.1</td>
<td>Generic message associated with an event. The content will depend on the nature of the trap.</td>
</tr>
<tr>
<td>fnMIBConformance</td>
<td>1.3.6.1.4.1.12356.100.10</td>
<td></td>
</tr>
<tr>
<td>fnSystemComplianceGroup</td>
<td>1.3.6.1.4.1.12356.100.10.1</td>
<td>Objects relating to the physical device.</td>
</tr>
<tr>
<td>fnMgmtComplianceGroup</td>
<td>1.3.6.1.4.1.12356.100.10.2</td>
<td>Objects relating the management of a device.</td>
</tr>
<tr>
<td>fnAdmincomplianceGroup</td>
<td>1.3.6.1.4.1.12356.100.10.3</td>
<td>Administration access control objects.</td>
</tr>
<tr>
<td>fnTrapsComplianceGroup</td>
<td>1.3.6.1.4.1.12356.100.10.4</td>
<td>Event notifications.</td>
</tr>
<tr>
<td>fnNotifObjectsComplianceGroup</td>
<td>1.3.6.1.4.1.12356.100.10.5</td>
<td>Object identifiers used in notifications.</td>
</tr>
</tbody>
</table>
Table 15: OIDs for the Fortinet-Core-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fnMIBCompliance</td>
<td>1.3.6.1.4.1.12356.100.10.100</td>
<td>Object identifiers used in notifications. Objects are required if their containing trap is implemented.</td>
</tr>
</tbody>
</table>

FortiGate MIB

Table 16: OIDs for the Fortinet-FortiGate-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgModel</td>
<td>1.3.6.1.4.1.12356.101.1</td>
<td></td>
</tr>
<tr>
<td>fgTraps</td>
<td>1.3.6.1.4.1.12356.101.2</td>
<td></td>
</tr>
<tr>
<td>fgTrapPrefix</td>
<td>1.3.6.1.4.1.12356.101.2.0</td>
<td></td>
</tr>
<tr>
<td>fgTrapVpnTunup</td>
<td>1.3.6.1.4.1.12356.101.2.0.301</td>
<td>Indicates that the specified VPN tunnel has been brought up.</td>
</tr>
<tr>
<td>fgTrapVpnTunDown</td>
<td>1.3.6.1.4.1.12356.101.2.0.302</td>
<td>The specified VPN tunnel has been brought down.</td>
</tr>
<tr>
<td>fgTrapHaSwitch</td>
<td>1.3.6.1.4.1.12356.101.2.0.401</td>
<td>The specified cluster member has transitioned from a slave role to a master role.</td>
</tr>
<tr>
<td>fgTrapHaStateChange</td>
<td>1.3.6.1.4.1.12356.101.2.0.402</td>
<td>Trap being sent when the HA cluster member changes its state.</td>
</tr>
<tr>
<td>fgTrapHaBFail</td>
<td>1.3.6.1.4.1.12356.101.2.0.403</td>
<td>The heartbeat device failure count has exceeded the configured threshold.</td>
</tr>
<tr>
<td>fgTrapHaMemberDown</td>
<td>1.3.6.1.4.1.12356.101.2.0.404</td>
<td>The specified device (by serial number) is moving to a down state.</td>
</tr>
<tr>
<td>fgTrapHaMemberUp</td>
<td>1.3.6.1.4.1.12356.101.2.0.405</td>
<td>A new cluster member has joined the cluster.</td>
</tr>
<tr>
<td>fgTraplpsSignature</td>
<td>1.3.6.1.4.1.12356.101.2.0.503</td>
<td>An IPS signature has been triggered.</td>
</tr>
<tr>
<td>fgTraplpsAnomaly</td>
<td>1.3.6.1.4.1.12356.101.2.0.504</td>
<td>An IPS anomaly has been detected.</td>
</tr>
<tr>
<td>fgTraplpsPkgUpdate</td>
<td>1.3.6.1.4.1.12356.101.2.0.505</td>
<td>The IPS signature database has been updated.</td>
</tr>
<tr>
<td>fgTrapAvVirus</td>
<td>1.3.6.1.4.1.12356.101.2.0.601</td>
<td>A virus has been detected by the antivirus engine.</td>
</tr>
<tr>
<td>fgTrapAvOversize</td>
<td>1.3.6.1.4.1.12356.101.2.0.602</td>
<td>An oversized file has been detected by the antivirus engine.</td>
</tr>
<tr>
<td>fgTrapAvPattern</td>
<td>1.3.6.1.4.1.12356.101.2.0.603</td>
<td>The antivirus engine has blocked a file because it matched a configured pattern.</td>
</tr>
</tbody>
</table>
Table 16: OIDs for the Fortinet-FortiGate-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgTrapAvFragmented</td>
<td>1.3.6.1.4.1.12356.101.2.0.604</td>
<td>The antivirus engine has detected a fragmented file.</td>
</tr>
<tr>
<td>fgTrapAvEnterConserve</td>
<td>1.3.6.1.4.1.12356.101.2.0.605</td>
<td>The antivirus engine has entered conservation mode due to low memory conditions.</td>
</tr>
<tr>
<td>fgTrapAvBypass</td>
<td>1.3.6.1.4.1.12356.101.2.0.606</td>
<td>The antivirus engine has been bypassed due to conservation mode.</td>
</tr>
<tr>
<td>fgTrapAvOversizePass</td>
<td>1.3.6.1.4.1.12356.101.2.0.607</td>
<td>An oversized file has been detected, but has been passed due to configuration.</td>
</tr>
<tr>
<td>fgTrapAvOversizeBlock</td>
<td>1.3.6.1.4.1.12356.101.2.0.608</td>
<td>An oversized file has been detected and has been blocked.</td>
</tr>
<tr>
<td>fgTrapFazDisconnect</td>
<td>1.3.6.1.4.1.12356.101.2.0.701</td>
<td>The device has been disconnected from the FortiAnalyzer.</td>
</tr>
</tbody>
</table>

Virtual Domains

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgVirtualDomain</td>
<td>1.3.6.1.4.1.12356.101.3</td>
<td></td>
</tr>
<tr>
<td>fgVdInfo</td>
<td>1.3.6.1.4.1.12356.101.3.1</td>
<td></td>
</tr>
<tr>
<td>fgVdNumber</td>
<td>1.3.6.1.4.1.12356.101.3.1.1</td>
<td>The number of virtual domains in vdTable.</td>
</tr>
<tr>
<td>fgVdMaxVdms</td>
<td>1.3.6.1.4.1.12356.101.3.1.2</td>
<td>The maximum number of virtual domains allowed on the device as allowed by hardware and/or licensing.</td>
</tr>
<tr>
<td>fgVdEnabled</td>
<td>1.3.6.1.4.1.12356.101.3.1.3</td>
<td>Whether virtual domains are enabled on this device.</td>
</tr>
<tr>
<td>fgVdTables</td>
<td>1.3.6.1.4.1.12356.101.3.2</td>
<td></td>
</tr>
<tr>
<td>fgVdTable</td>
<td>1.3.6.1.4.1.12356.101.3.2.1</td>
<td></td>
</tr>
<tr>
<td>fgVdEntry</td>
<td>1.3.6.1.4.1.12356.101.3.2.1.1</td>
<td>An entry containing information applicable to a particular virtual domain.</td>
</tr>
<tr>
<td>fgVdEntIndex</td>
<td>1.3.6.1.4.1.12356.101.3.2.1.1.1</td>
<td>Internal virtual domain index used to uniquely identify rows in this table. This index is also used by other tables referencing a virtual domain.</td>
</tr>
<tr>
<td>fgVdEntName</td>
<td>1.3.6.1.4.1.12356.101.3.2.1.1.2</td>
<td>The name of the virtual domain.</td>
</tr>
<tr>
<td>fgVdEntOpMode</td>
<td>1.3.6.1.4.1.12356.101.3.2.1.1.3</td>
<td>Operation mode of the virtual domain (NAT or transparent).</td>
</tr>
</tbody>
</table>
Table 16: OIDs for the Fortinet-FortiGate-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgVdTpTable</td>
<td>1.3.6.1.4.1.12356.101.3.2.2</td>
<td>A table of virtual domains in transparent operation mode. This table has a dependent relationship with fgVdTable.</td>
</tr>
<tr>
<td>fgVdTpEntry</td>
<td>1.3.6.1.4.1.12356.101.3.2.2.1</td>
<td>An entry containing information applicable to a particular virtual domain in transparent mode.</td>
</tr>
<tr>
<td>fgVdTpMgmtAddrType</td>
<td>1.3.6.1.4.1.12356.101.3.2.2.1.1</td>
<td>The type of address stored in fgVdTpMgmtAddr, in compliance with INET-ADDRESS-MIB.</td>
</tr>
<tr>
<td>fgVdTpMgmtAddr</td>
<td>1.3.6.1.4.1.12356.101.3.2.2.1.2</td>
<td>The management IP address of the virtual domain in transparent mode, typically an IPv4 address. The address type/format is determined by fgVdTpMgmtAddrType.</td>
</tr>
<tr>
<td>fgVdTpMgmtMask</td>
<td>1.3.6.1.4.1.12356.101.3.2.2.1.3</td>
<td>The address prefix length (or network mask) applied to the fgVdTpMgmtAddr.</td>
</tr>
<tr>
<td>System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fgSystem</td>
<td>1.3.6.1.4.1.12356.101.4</td>
<td></td>
</tr>
<tr>
<td>fgSystemInfo</td>
<td>1.3.6.1.4.1.12356.101.4.1</td>
<td></td>
</tr>
<tr>
<td>fgSysVersion</td>
<td>1.3.6.1.4.1.12356.101.4.1.1</td>
<td>Firmware version.</td>
</tr>
<tr>
<td>fgSysMgmtVdom</td>
<td>1.3.6.1.4.1.12356.101.4.1.2</td>
<td>Index that identifies the management virtual domain. This index corresponds to the index used by fgVdTable.</td>
</tr>
<tr>
<td>fgSysCpuUsage</td>
<td>1.3.6.1.4.1.12356.101.4.1.3</td>
<td>Current CPU usage (percentage).</td>
</tr>
<tr>
<td>fgSysMemUsage</td>
<td>1.3.6.1.4.1.12356.101.4.1.4</td>
<td>Current memory usage (percentage).</td>
</tr>
<tr>
<td>fgSysMemCapacity</td>
<td>1.3.6.1.4.1.12356.101.4.1.5</td>
<td>Total physical RA installed (KB)</td>
</tr>
<tr>
<td>fgSysDiskUsage</td>
<td>1.3.6.1.4.1.12356.101.4.1.6</td>
<td>Current hard disk usage (MB), if disk is present.</td>
</tr>
<tr>
<td>fgSysDiskCapacity</td>
<td>1.3.6.1.4.1.12356.101.4.1.7</td>
<td>Total hard disk capacity (MB), if disk is present.</td>
</tr>
<tr>
<td>fgSysSesCount</td>
<td>1.3.6.1.4.1.12356.101.4.1.8</td>
<td>Number of active sessions on the device.</td>
</tr>
</tbody>
</table>
Table 16: OIDs for the Fortinet-FortiGate-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgSysLowMemUsage</td>
<td>1.3.6.1.4.1.12356.101.4.1.9</td>
<td>Current lowmem utilization (percentage). Lowmem is memory available for the kernel’s own data structures and kernel specific tables. The system can get into a bad state if it runs out of lowmem.</td>
</tr>
<tr>
<td>fgSysLowMemCapacity</td>
<td>1.3.6.1.4.1.12356.101.4.1.10</td>
<td>Total lowmem capacity (KB).</td>
</tr>
<tr>
<td>Firewall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fgFirewal</td>
<td>1.3.6.1.4.1.12356.101.5</td>
<td></td>
</tr>
<tr>
<td>fgFwPolicies</td>
<td>1.3.6.1.4.1.12356.101.5.1</td>
<td></td>
</tr>
<tr>
<td>fgFwPolInfo</td>
<td>1.3.6.1.4.1.12356.101.5.1.1</td>
<td></td>
</tr>
<tr>
<td>fgFwPolTables</td>
<td>1.3.6.1.4.1.12356.101.5.1.2</td>
<td></td>
</tr>
<tr>
<td>fgFwPolStatsTable</td>
<td>1.3.6.1.4.1.12356.101.5.1.2.1</td>
<td>Security policy statistics table. This table has a dependent expansion relationship with fgVdTable. Only virtual domains with enabled policies are present in this table.</td>
</tr>
<tr>
<td>fgFwPolStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.5.1.2.1.1</td>
<td>Security policy statistics on a virtual domain.</td>
</tr>
<tr>
<td>fgFwPollID</td>
<td>1.3.6.1.4.1.12356.101.5.1.2.1.1.1</td>
<td>Security policy ID. Only enabled policies are present in this table. Policy IDs are only unique within a virtual domain.</td>
</tr>
<tr>
<td>fgFwPolPktCount</td>
<td>1.3.6.1.4.1.12356.101.5.1.2.1.1.2</td>
<td>Number of packets matched to policy (passed or blocked, depending on policy action). Count is from the time the policy became active.</td>
</tr>
<tr>
<td>fgFwPolByteCount</td>
<td>1.3.6.1.4.1.12356.101.5.1.2.1.1.3</td>
<td>Number of bytes in packets matching the policy. See fgFwPolPktCount.</td>
</tr>
<tr>
<td>fgFwUsers</td>
<td>1.3.6.1.4.1.12356.101.5.2</td>
<td></td>
</tr>
<tr>
<td>fgFwUserInfo</td>
<td>1.3.6.1.4.1.12356.101.5.2.1</td>
<td></td>
</tr>
<tr>
<td>fgFwUserNumber</td>
<td>1.3.6.1.4.1.12356.101.5.2.1.1</td>
<td>The number of user accounts in fgFwUserTable.</td>
</tr>
<tr>
<td>fgFwUserAuthTimeout</td>
<td>1.3.6.1.4.1.12356.101.5.2.1.2</td>
<td>Idle period after which a firewall-authentication user’s session is automatically expired.</td>
</tr>
<tr>
<td>fgFwUserTables</td>
<td>1.3.6.1.4.1.12356.101.5.2.2</td>
<td></td>
</tr>
</tbody>
</table>
Table 16: OIDs for the Fortinet-FortiGate-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgFwUserTable</td>
<td>1.3.6.1.4.1.12356.101.5.2.2.1.1</td>
<td>A list of local and proxy (Radius server) user accounts for use with firewall user authentication.</td>
</tr>
<tr>
<td>fgFwUserEntry</td>
<td>1.3.6.1.4.1.12356.101.5.2.2.1.1</td>
<td>An entry containing information applicable to a particular user account.</td>
</tr>
<tr>
<td>fgFwUserIndex</td>
<td>1.3.6.1.4.1.12356.101.5.2.2.1.1</td>
<td>An index for uniquely identifying the users in fgFwUserTable.</td>
</tr>
<tr>
<td>fgFwUserName</td>
<td>1.3.6.1.4.1.12356.101.5.2.2.1.1</td>
<td>User name of the specified account.</td>
</tr>
<tr>
<td>fgFwUserAuth</td>
<td>1.3.6.1.4.1.12356.101.5.2.2.1.1</td>
<td>Type of authentication the account uses (local, RADIUS, LDAP, etc.).</td>
</tr>
<tr>
<td>fgFwUserState</td>
<td>1.3.6.1.4.1.12356.101.5.2.2.1.1</td>
<td>Status of the user account (enabled/disabled).</td>
</tr>
<tr>
<td>fgFwUserVdom</td>
<td>1.3.6.1.4.1.12356.101.5.2.2.1.1</td>
<td>Virtual domain the user account exists in. This index corresponds to the index used in fgVdTable.</td>
</tr>
</tbody>
</table>

FortiManager and Administration

<table>
<thead>
<tr>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgMgmt</td>
<td>1.3.6.1.4.1.12356.101.6</td>
</tr>
<tr>
<td>fgFmTrapPrefix</td>
<td>1.3.6.1.4.1.12356.101.6.0</td>
</tr>
<tr>
<td>fgFmTrapDeployComplete</td>
<td>1.3.6.1.4.1.12356.101.6.0.1000</td>
</tr>
<tr>
<td>Indicates when deployment of a new configuration has been completed. Used for verification by FortiManager.</td>
<td></td>
</tr>
<tr>
<td>fgFmTrapDeployInProgress</td>
<td>1.3.6.1.4.1.12356.101.6.0.1002</td>
</tr>
<tr>
<td>Indicates that a configuration change was not immediate and that the change is currently in progress. Used for verification by FortiManager.</td>
<td></td>
</tr>
<tr>
<td>fgFmTrapConfChange</td>
<td>1.3.6.1.4.1.12356.101.6.0.1003</td>
</tr>
<tr>
<td>The device configuration has been changed by something other than the managing FortiManager unit.</td>
<td></td>
</tr>
<tr>
<td>fgFmTrapIfChange</td>
<td>1.3.6.1.4.1.12356.101.6.0.1004</td>
</tr>
<tr>
<td>Trap is sent to the managing FortiManager if an interface IP is changed.</td>
<td></td>
</tr>
<tr>
<td>fgAdmin</td>
<td>1.3.6.1.4.1.12356.101.6.1</td>
</tr>
<tr>
<td>fgAdminOptions</td>
<td>1.3.6.1.4.1.12356.101.6.1.1</td>
</tr>
<tr>
<td>fgAdminIdleTimeout</td>
<td>1.3.6.1.4.1.12356.101.6.1.1.1</td>
</tr>
<tr>
<td>Idle period after which an administrator is automatically logged out of the system.</td>
<td></td>
</tr>
<tr>
<td>MIB Field</td>
<td>OID</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>fgAdminLcdProtection</td>
<td>1.3.6.1.4.1.12356.101.6.1.1.2</td>
</tr>
<tr>
<td>fgAdminTables</td>
<td>1.3.6.1.4.1.12356.101.6.1.2</td>
</tr>
<tr>
<td>fgAdminTable</td>
<td>1.3.6.1.4.1.12356.101.6.1.2.1</td>
</tr>
<tr>
<td>fgAdminEntry</td>
<td>1.3.6.1.4.1.12356.101.6.1.2.1.1</td>
</tr>
<tr>
<td>fgMgmtTrapObjects</td>
<td>1.3.6.1.4.1.12356.101.6.2</td>
</tr>
<tr>
<td>fgManIfIp</td>
<td>1.3.6.1.4.1.12356.101.6.2.1</td>
</tr>
<tr>
<td>Antivirus</td>
<td></td>
</tr>
<tr>
<td>fgAntivirus</td>
<td>1.3.6.1.4.1.12356.101.8</td>
</tr>
<tr>
<td>fgAvInfo</td>
<td>1.3.6.1.4.1.12356.101.8.1</td>
</tr>
<tr>
<td>fgAvTables</td>
<td>1.3.6.1.4.1.12356.101.8.2</td>
</tr>
<tr>
<td>fgAvStatsTable</td>
<td>1.3.6.1.4.1.12356.101.8.2.1</td>
</tr>
<tr>
<td>fgAvStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1</td>
</tr>
<tr>
<td>fgAvVirusDetected</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.1</td>
</tr>
<tr>
<td>fgAvVirusBlocked</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.2</td>
</tr>
<tr>
<td>fgAvHTTPVirusDetected</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.3</td>
</tr>
<tr>
<td>fgAvHTTPVirusBlocked</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.4</td>
</tr>
<tr>
<td>fgAvSMTPVirusDetected</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.5</td>
</tr>
</tbody>
</table>
Table 16: OIDs for the Fortinet-FortiGate-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgAvSMTPVirusBlocked</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.6</td>
<td>Number of virus transmissions over SMTP blocked in the virtual domain since start up.</td>
</tr>
<tr>
<td>fgAvPOP3VirusDetected</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.7</td>
<td>Number of virus transmissions over POP3 detected in the virtual domain since start up.</td>
</tr>
<tr>
<td>fgAvPOP3VirusBlocked</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.8</td>
<td>Number of virus transmissions over POP3 blocked in the virtual domain since start up.</td>
</tr>
<tr>
<td>fgAvIMAPVirusDetected</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.9</td>
<td>Number of virus transmissions over IMAP detected in the virtual domain since start up.</td>
</tr>
<tr>
<td>fgAvIMAPVirusBlocked</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.10</td>
<td>Number of virus transmissions over IMAP blocked in the virtual domain since start up.</td>
</tr>
<tr>
<td>fgAvFTPVirusDetected</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.11</td>
<td>Number of virus transmissions over FTP detected in the virtual domain since start up.</td>
</tr>
<tr>
<td>fgAvFTPVirusBlocked</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.12</td>
<td>Number of virus transmissions over FTP blocked in the virtual domain since start up.</td>
</tr>
<tr>
<td>fgAvIMVirusDetected</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.13</td>
<td>Number of virus transmissions over IM protocols detected in the virtual domain since start up.</td>
</tr>
<tr>
<td>fgAvIMVirusBlocked</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.14</td>
<td>Number of virus transmissions over IM protocols blocked in the virtual domain since start up.</td>
</tr>
<tr>
<td>fgAvNNTPVirusDetected</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.15</td>
<td>Number of virus transmissions over NNTP detected in the virtual domain since start up.</td>
</tr>
<tr>
<td>fgAvNNTPVirusBlocked</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.16</td>
<td>Number of virus transmissions over NNTP blocked in the virtual domain since start up.</td>
</tr>
<tr>
<td>fgAvOversizedDetected</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.17</td>
<td>Number of over-sized file transmissions detected in the virtual domain since start up.</td>
</tr>
</tbody>
</table>
Table 16: OIDs for the Fortinet-FortiGate-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgAvOversizedBlocked</td>
<td>1.3.6.1.4.1.12356.101.8.2.1.1.18</td>
<td>Number of over-sized file transmissions blocked in the virtual domain since start up.</td>
</tr>
<tr>
<td>fgAvTrapObjects</td>
<td>1.3.6.1.4.1.12356.101.8.3</td>
<td></td>
</tr>
<tr>
<td>fgAvTrapVirName</td>
<td>1.3.6.1.4.1.12356.101.8.3.1</td>
<td>Virus name that triggered event.</td>
</tr>
<tr>
<td>IPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fgIps</td>
<td>1.3.6.1.4.1.12356.101.9</td>
<td></td>
</tr>
<tr>
<td>fgIpsInfo</td>
<td>1.3.6.1.4.1.12356.101.9.1</td>
<td>A table of IPS/IDS statistics per virtual domain.</td>
</tr>
<tr>
<td>fgIpsTables</td>
<td>1.3.6.1.4.1.12356.101.9.2</td>
<td></td>
</tr>
<tr>
<td>fgIpsStatsTable</td>
<td>1.3.6.1.4.1.12356.101.9.2.1</td>
<td>A table of IPS/IDS statistics per virtual domain.</td>
</tr>
<tr>
<td>fgIpsStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.9.2.1.1</td>
<td>IPS/IDS statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgIpsIntrusionDetected</td>
<td>1.3.6.1.4.1.12356.101.9.2.1.1.1</td>
<td>Number of intrusions detected since start up in this virtual domain.</td>
</tr>
<tr>
<td>fgIpsIntrusionBlocked</td>
<td>1.3.6.1.4.1.12356.101.9.2.1.1.2</td>
<td>Number of intrusions blocked since start up in this virtual domain.</td>
</tr>
<tr>
<td>fgIpsCritSevDetections</td>
<td>1.3.6.1.4.1.12356.101.9.2.1.1.3</td>
<td>Number of critical severity intrusions detected since start up in this virtual domain.</td>
</tr>
<tr>
<td>fgIpsHighSevDetections</td>
<td>1.3.6.1.4.1.12356.101.9.2.1.1.4</td>
<td>Number of high severity intrusions detected since start up in this virtual domain.</td>
</tr>
<tr>
<td>fgIpsMedSevDetections</td>
<td>1.3.6.1.4.1.12356.101.9.2.1.1.5</td>
<td>Number of medium severity intrusions detected since start up in this virtual domain.</td>
</tr>
<tr>
<td>fgIpsLowSevDetections</td>
<td>1.3.6.1.4.1.12356.101.9.2.1.1.6</td>
<td>Number of low severity intrusions detected since start up in this virtual domain.</td>
</tr>
<tr>
<td>fgIpsInfoSevDetections</td>
<td>1.3.6.1.4.1.12356.101.9.2.1.1.7</td>
<td>Number of informational severity intrusions detected since start up in this virtual domain.</td>
</tr>
<tr>
<td>fgIpsSignatureDetections</td>
<td>1.3.6.1.4.1.12356.101.9.2.1.1.8</td>
<td>Number of intrusions detected by signature since start up in this virtual domain.</td>
</tr>
</tbody>
</table>
Table 16: OIDs for the Fortinet-FortiGate-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgIpsAnomalyDetections</td>
<td>1.3.6.1.4.1.12356.101.9.2.1.1.9</td>
<td>Number of intrusions detected as anomalies since start up in this virtual domain.</td>
</tr>
<tr>
<td>fgIpsTrapObjects</td>
<td>1.3.6.1.4.1.12356.101.9.3</td>
<td>ID of IPS signature identified in trap.</td>
</tr>
<tr>
<td>fgIpsTrapSigId</td>
<td>1.3.6.1.4.1.12356.101.9.3.1</td>
<td>ID of IPS signature identified in trap.</td>
</tr>
<tr>
<td>fgIpsTrapSrcIp</td>
<td>1.3.6.1.4.1.12356.101.9.3.2</td>
<td>Source IP Address of the IPS signature trigger.</td>
</tr>
<tr>
<td>fgIpsTrapSigMsg</td>
<td>1.3.6.1.4.1.12356.101.9.3.3</td>
<td>Message associated with IPS event.</td>
</tr>
</tbody>
</table>

Application Control

<table>
<thead>
<tr>
<th>fgApplications</th>
<th>1.3.6.1.4.1.12356.101.10</th>
<th>Web filter statistics per virtual domain.</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgWebfilter</td>
<td>1.3.6.1.4.1.12356.101.10.1</td>
<td>Web filter statistics per virtual domain.</td>
</tr>
<tr>
<td>fgWebfilterInfo</td>
<td>1.3.6.1.4.1.12356.101.10.1.1</td>
<td>Web filter statistics per virtual domain.</td>
</tr>
<tr>
<td>fgWebfilterTables</td>
<td>1.3.6.1.4.1.12356.101.10.1.2</td>
<td>Web filter statistics per virtual domain.</td>
</tr>
<tr>
<td>fgWebfilterStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.1</td>
<td>Web filter statistics per virtual domain.</td>
</tr>
<tr>
<td>fgWebfilterStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.1.1</td>
<td>Web filter statistics per virtual domain.</td>
</tr>
<tr>
<td>fgWfHTTPBlocked</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.1.1.1</td>
<td>Number of HTTP sessions blocked by Web filter since start up.</td>
</tr>
<tr>
<td>fgWfHTTPSBlocked</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.1.1.2</td>
<td>Number of HTTPS sessions blocked by Web filter since start up.</td>
</tr>
<tr>
<td>fgWfHTTPURLBlocked</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.1.1.3</td>
<td>Number of HTTP URLs blocked by Web filter since start up.</td>
</tr>
<tr>
<td>fgWfHTTPSURLBlocked</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.1.1.4</td>
<td>Number of HTTPS URLs blocked by Web filter since start up.</td>
</tr>
<tr>
<td>fgWfActiveXBlocked</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.1.1.5</td>
<td>Number of ActiveX downloads blocked by Web filter since start up.</td>
</tr>
<tr>
<td>fgWfCookieBlocked</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.1.1.6</td>
<td>Number of HTTP Cookies blocked by Web filter since start up.</td>
</tr>
<tr>
<td>fgWfAppletBlocked</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.1.1.7</td>
<td>Number of Applets blocked by Web-filter since start up.</td>
</tr>
<tr>
<td>fgFortiGuardStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.2</td>
<td>FortiGuard statistics per virtual domain.</td>
</tr>
<tr>
<td>fgFortiGuardStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.2.1</td>
<td>FortiGuard statistics per virtual domain.</td>
</tr>
</tbody>
</table>
MIB Field OIDs

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgFgWfHTTPExamined</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.2.1.1</td>
<td>Number of HTTP requests examined using FortiGuard since start up.</td>
</tr>
<tr>
<td>fgFgWfHTTPSExamined</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.2.1.2</td>
<td>Number of HTTPS requests examined using FortiGuard since start up.</td>
</tr>
<tr>
<td>fgFgWfHTTPAllowed</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.2.1.3</td>
<td>Number of HTTP requests allowed to proceed using FortiGuard since start up.</td>
</tr>
<tr>
<td>fgFgWfHTTPSAllowed</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.2.1.4</td>
<td>Number of HTTPS requests allowed to proceed using FortiGuard since start up.</td>
</tr>
<tr>
<td>fgFgWfHTTPBlocked</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.2.1.5</td>
<td>Number of HTTP requests blocked using FortiGuard since start up.</td>
</tr>
<tr>
<td>fgFgWfHTTPSBlocked</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.2.1.6</td>
<td>Number of HTTPS requests blocked using FortiGuard since start up.</td>
</tr>
<tr>
<td>fgFgWfHTTPLogged</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.2.1.7</td>
<td>Number of HTTP requests logged using FortiGuard since start up.</td>
</tr>
<tr>
<td>fgFgWfHTTPSLogged</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.2.1.8</td>
<td>Number of HTTPS requests logged using FortiGuard since start up.</td>
</tr>
<tr>
<td>fgFgWfHTTPOverridden</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.2.1.9</td>
<td>Number of HTTP requests overridden using FortiGuard since start up.</td>
</tr>
<tr>
<td>fgFgWfHTTPSOverridden</td>
<td>1.3.6.1.4.1.12356.101.10.1.2.2.1.10</td>
<td>Number of HTTPS requests overridden using FortiGuard since start up.</td>
</tr>
<tr>
<td>fgAppProxyHTTP</td>
<td>1.3.6.1.4.1.12356.101.10.100</td>
<td>HTTP proxy up-time, in seconds.</td>
</tr>
<tr>
<td>fgApHTTPUpTime</td>
<td>1.3.6.1.4.1.12356.101.10.100.1</td>
<td>HTTP proxy memory usage (percentage of system total).</td>
</tr>
<tr>
<td>fgApHTTPMemUsage</td>
<td>1.3.6.1.4.1.12356.101.10.100.2</td>
<td>A table of HTTP Proxy statistics per virtual domain.</td>
</tr>
<tr>
<td>fgApHTTPStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.100.3</td>
<td>HTTP Proxy statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgApHTTPStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.100.3.1</td>
<td>Number of HTTP requests in this virtual domain processed by the HTTP proxy since start up.</td>
</tr>
<tr>
<td>fgApHRRPReqProcessed</td>
<td>1.3.6.1.4.1.12356.101.10.100.3.1.1</td>
<td>HTTP proxy current connections.</td>
</tr>
<tr>
<td>fgAppProxySMTP</td>
<td>1.3.6.1.4.1.12356.101.10.101</td>
<td></td>
</tr>
<tr>
<td>MIB Field</td>
<td>OID</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>fgApSMTPUpTime</td>
<td>1.3.6.1.4.1.12356.101.10.101.1</td>
<td>SMTP Proxy up-time, in seconds.</td>
</tr>
<tr>
<td>fgAPSMTPMemUsage</td>
<td>1.3.6.1.4.1.12356.101.10.101.2</td>
<td>SMTP Proxy memory utilization (percentage of system total).</td>
</tr>
<tr>
<td>fgApSMTPStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.101.3</td>
<td>A table of SMTP proxy statistics per virtual domain.</td>
</tr>
<tr>
<td>fgApSMTPStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.101.3.1</td>
<td>SMTP Proxy statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgApSMTPReqProcessed</td>
<td>1.3.6.1.4.1.12356.101.10.101.3.1.1</td>
<td>Number of requests in this virtual domain processed by the SMTP proxy since start up.</td>
</tr>
<tr>
<td>fgApSMTPSpamDetected</td>
<td>1.3.6.1.4.1.12356.101.10.101.3.1.2</td>
<td>Number of spam detected in this virtual domain by the SMTP proxy since start up.</td>
</tr>
<tr>
<td>fgApSMTPConnections</td>
<td>1.3.6.1.4.1.12356.101.10.101.4</td>
<td>SMTP proxy current connections.</td>
</tr>
<tr>
<td>fgAppProxyPOP3</td>
<td>1.3.6.1.4.1.12356.101.10.102</td>
<td>Up time of the POP3 proxy, in seconds.</td>
</tr>
<tr>
<td>fgApPOP3UpTime</td>
<td>1.3.6.1.4.1.12356.101.10.102.1</td>
<td>Memory usage of the POP3 Proxy (as a percentage of system total).</td>
</tr>
<tr>
<td>fgApPOP3MemUsage</td>
<td>1.3.6.1.4.1.12356.101.10.102.2</td>
<td>Memory usage of the POP3 Proxy (percentage of system total).</td>
</tr>
<tr>
<td>fgApPOP3StatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.102.3</td>
<td>A table of POP3 proxy statistics per virtual domain.</td>
</tr>
<tr>
<td>fgApPOP3StatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.102.3.1</td>
<td>Proxy pop3 statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgApPOP3ReqProcessed</td>
<td>1.3.6.1.4.1.12356.101.10.102.3.1.1</td>
<td>Number of requests in this virtual domain processed by the POP3 proxy since start up.</td>
</tr>
<tr>
<td>fgApPOP3SpamDetected</td>
<td>1.3.6.1.4.1.12356.101.10.102.3.1.2</td>
<td>Number of spam detected in this virtual domain by the POP3 Proxy since start up.</td>
</tr>
<tr>
<td>fgApPOP3Connections</td>
<td>1.3.6.1.4.1.12356.101.10.102.4</td>
<td>POP3 proxy current connections.</td>
</tr>
<tr>
<td>fgAppProxyIMAP</td>
<td>1.3.6.1.4.1.12356.101.10.103</td>
<td>Up time of the IMAP proxy, in seconds.</td>
</tr>
<tr>
<td>fgApiMAPUpTime</td>
<td>1.3.6.1.4.1.12356.101.10.103.1</td>
<td>Memory utilization of the IMAP Proxy (as a percentage of the system total).</td>
</tr>
<tr>
<td>fgapiMAPMemUsage</td>
<td>1.3.6.1.4.1.12356.101.10.103.2</td>
<td>Memory utilization of the IMAP Proxy (as a percentage of the system total).</td>
</tr>
<tr>
<td>fgApiMAPStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.103.3</td>
<td>A table of IMAP proxy statistics per virtual domain.</td>
</tr>
</tbody>
</table>
Table 16: OIDs for the Fortinet-FortiGate-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgApIMAPStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.103.3.1</td>
<td>IMAP Proxy statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgApIMAPReqProcessed</td>
<td>1.3.6.1.4.1.12356.101.10.103.3.1.1</td>
<td>Number of requests in this virtual domain processed by the IMAP proxy since start up.</td>
</tr>
<tr>
<td>fgApIMAPSpamDetected</td>
<td>1.3.6.1.4.1.12356.101.10.103.3.1.2</td>
<td>Number of spam detected in this virtual domain by the IMAP proxy since start up.</td>
</tr>
<tr>
<td>fgApIMAPConnections</td>
<td>1.3.6.1.4.1.12356.101.10.103.4</td>
<td>IMAP proxy current connections.</td>
</tr>
<tr>
<td>fgAppProxyNNTP</td>
<td>1.3.6.1.4.1.12356.101.10.104</td>
<td>Up time of the NNTP proxy, in seconds.</td>
</tr>
<tr>
<td>fgApNNTPUpTime</td>
<td>1.3.6.1.4.1.12356.101.10.104.1</td>
<td>Memory utilization of the NNTP proxy, as a percentage of the system total.</td>
</tr>
<tr>
<td>fgApNNTPMemUsage</td>
<td>1.3.6.1.4.1.12356.101.10.104.2</td>
<td>A table of NNTP proxy statistics per virtual domain.</td>
</tr>
<tr>
<td>fgApNNTPStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.104.3</td>
<td>NNTP Proxy statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgApNNTPStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.104.3.1</td>
<td>Number of requests in the virtual domain processed by the NNTP proxy since start up.</td>
</tr>
<tr>
<td>fgApNNTPReqProcessed</td>
<td>1.3.6.1.4.1.12356.101.10.104.3.1.1</td>
<td>Number of requests in this virtual domain processed by the NNTP proxy since start up.</td>
</tr>
<tr>
<td>fgApNNTPConnections</td>
<td>1.3.6.1.4.1.12356.101.10.104.4</td>
<td>NNTP proxy current connections.</td>
</tr>
<tr>
<td>fgAppProxyIM</td>
<td>1.3.6.1.4.1.12356.101.10.105</td>
<td>Up time of the IM proxy, in seconds.</td>
</tr>
<tr>
<td>fgApIMUpTime</td>
<td>1.3.6.1.4.1.12356.101.10.105.1</td>
<td>IM Proxy memory usage, as a percentage of the system total.</td>
</tr>
<tr>
<td>fgApIMMemUsage</td>
<td>1.3.6.1.4.1.12356.101.10.105.2</td>
<td>A table of IM proxy statistics per virtual domain.</td>
</tr>
<tr>
<td>fgApIMStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.105.3</td>
<td>IM Proxy statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgApIMStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.105.3.1</td>
<td>Number of requests in this virtual domain processed by the IM proxy since start up.</td>
</tr>
<tr>
<td>fgApIMReqProcessed</td>
<td>1.3.6.1.4.1.12356.101.10.105.3.1.1</td>
<td>Number of requests in this virtual domain processed by the IM proxy since start up.</td>
</tr>
<tr>
<td>fgAppProxySIP</td>
<td>1.3.6.1.4.1.12356.101.10.106</td>
<td>Up time of the SIP Proxy, in seconds.</td>
</tr>
<tr>
<td>MIB Field</td>
<td>OID</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>fgApSIPMemUsage</td>
<td>1.3.6.1.4.1.12356.101.10.106.2</td>
<td>SIP Proxy memory utilization, as a percentage of the system total.</td>
</tr>
<tr>
<td>fgApSIPStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.106.3</td>
<td>A table of SIP proxy statistics per virtual domain.</td>
</tr>
<tr>
<td>fgApSIPStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.106.3.1</td>
<td>SIP Proxy statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgApSIPClientReg</td>
<td>1.3.6.1.4.1.12356.101.10.106.3.1.1</td>
<td>Number of client registration requests (Register and Options) in this virtual domain processed by the SIP proxy since start up.</td>
</tr>
<tr>
<td>fgApSIPCallHandling</td>
<td>1.3.6.1.4.1.12356.101.10.106.3.1.2</td>
<td>Number of call handling requests (Invite, Ack, Bye, Cancel and Refer) in this virtual domain processed by the SIP proxy since start up.</td>
</tr>
<tr>
<td>fgApSIPServices</td>
<td>1.3.6.1.4.1.12356.101.10.106.3.1.3</td>
<td>Number of service requests (Subscribe, notify and Message) in this virtual domain processed by the SIP proxy since start up.</td>
</tr>
<tr>
<td>fgApSIPOtherReq</td>
<td>1.3.6.1.4.1.12356.101.10.106.3.1.4</td>
<td>Number of other sip requests in this virtual domain processed by the SIP proxy since start up.</td>
</tr>
<tr>
<td>fgAppScanUnit</td>
<td>1.3.6.1.4.1.12356.101.10.107</td>
<td></td>
</tr>
<tr>
<td>fgAppSuNumber</td>
<td>1.3.6.1.4.1.12356.101.10.107.1</td>
<td>The number of scan units in the fgAppSuStatsTable.</td>
</tr>
<tr>
<td>fgAppSuStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.107.2</td>
<td>A table of scan unit statistics.</td>
</tr>
<tr>
<td>fgAppSuStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.107.2.1</td>
<td>Statistics entry for a particular scan unit.</td>
</tr>
<tr>
<td>fgAppSuIndex</td>
<td>1.3.6.1.4.1.12356.101.10.107.2.1.1</td>
<td>Index that uniquely identifies a scan unit in the fgAppSuStatsTable.</td>
</tr>
<tr>
<td>fgAppSuFileScanned</td>
<td>1.3.6.1.4.1.12356.101.10.107.2.1.2</td>
<td>Number of files scanned by this scan unit.</td>
</tr>
<tr>
<td>fgAppVoIP</td>
<td>1.3.6.1.4.1.12356.101.10.108</td>
<td></td>
</tr>
<tr>
<td>fgAppVoIPStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.108.1</td>
<td>A table of VoIP related statistics per virtual domain.</td>
</tr>
<tr>
<td>fgAppVoIPStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.108.1.1</td>
<td>VoIP statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgAppVoIPConn</td>
<td>1.3.6.1.4.1.12356.101.10.108.1.1.1</td>
<td>The current number of VoIP connections on the virtual domain.</td>
</tr>
<tr>
<td>MIB Field</td>
<td>OID</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>fgAppVoIPCallBlocked</td>
<td>1.3.6.1.4.1.12356.101.10.108.1.1.2</td>
<td>Number of VoIP calls blocked (SIP Invites blocked and SCCP calls blocked) in this virtual domain.</td>
</tr>
<tr>
<td>fgAppP2P</td>
<td>1.3.6.1.4.1.12356.101.10.109</td>
<td></td>
</tr>
<tr>
<td>fgAppP2PStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.109.1</td>
<td>A table of P2P protocol related statistics per virtual domain.</td>
</tr>
<tr>
<td>fgAppP2PStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.109.1.1</td>
<td>P2P statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgAppP2PConnBlocked</td>
<td>1.3.6.1.4.1.12356.101.10.109.1.1.1</td>
<td>Number of P2P connections blocked in this virtual domain.</td>
</tr>
<tr>
<td>fgAppP2PProtoTable</td>
<td>1.3.6.1.4.1.12356.101.10.109.2</td>
<td>A table of peer to peer statistics per virtual domain per protocol. This table has a dependent expansion relationship with fgVdTable.</td>
</tr>
<tr>
<td>fgAppP2PProtoEntry</td>
<td>1.3.6.1.4.1.12356.101.10.109.2.1</td>
<td>P2P statistics for a particular virtual domain and protocol.</td>
</tr>
<tr>
<td>fgAppP2PProtoEntProto</td>
<td>1.3.6.1.4.1.12356.101.10.109.2.1.1</td>
<td>P2P protocol this row of statistics is for, within the specified virtual domain.</td>
</tr>
<tr>
<td>fgAppP2PProtoEntBytes</td>
<td>1.3.6.1.4.1.12356.101.10.109.2.1.2</td>
<td>Number of bytes transferred through this virtual domain on this P2P protocol since last reset.</td>
</tr>
<tr>
<td>fgAppP2PProtoEntLastReset</td>
<td>1.3.6.1.4.1.12356.101.10.109.2.1.3</td>
<td>Time elapsed since the corresponding fgAppP2PProtoEntBytes was last reset to 0.</td>
</tr>
<tr>
<td>fgAppIM</td>
<td>1.3.6.1.4.1.12356.101.10.110</td>
<td></td>
</tr>
<tr>
<td>fgAppIMStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.110.1</td>
<td>A table of instant messaging statistics per virtual domain.</td>
</tr>
<tr>
<td>fgAppIMStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.110.1.1</td>
<td>IM statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgAppIMMessages</td>
<td>1.3.6.1.4.1.12356.101.10.110.1.1.1</td>
<td>Total number of IM messages processed in this virtual domain.</td>
</tr>
<tr>
<td>fgAppIMFileTransferred</td>
<td>1.3.6.1.4.1.12356.101.10.110.1.1.2</td>
<td>Number of files transferred through this virtual domain.</td>
</tr>
<tr>
<td>fgAppIMFileTxBlocked</td>
<td>1.3.6.1.4.1.12356.101.10.110.1.1.3</td>
<td>Number of blocked file transfers in this virtual domain.</td>
</tr>
<tr>
<td>fgAppIMConnBlocked</td>
<td>1.3.6.1.4.1.12356.101.10.110.1.1.4</td>
<td>Number of connections blocked in this virtual domain.</td>
</tr>
</tbody>
</table>
Table 16: OIDs for the Fortinet-FortiGate-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgAppProxyFTP</td>
<td>1.3.6.1.4.1.12356.101.10.111</td>
<td></td>
</tr>
<tr>
<td>fgApFTPUpTime</td>
<td>1.3.6.1.4.1.12356.101.10.111.1</td>
<td>Up time of the FTP proxy, in seconds.</td>
</tr>
<tr>
<td>fgApFTPMemUsage</td>
<td>1.3.6.1.4.1.12356.101.10.111.2</td>
<td>FTP Proxy memory utilization, as a percentage of the system total.</td>
</tr>
<tr>
<td>fgApFTPStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.111.3</td>
<td>A table of FTP proxy statistics per virtual domain.</td>
</tr>
<tr>
<td>fgApFTPStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.111.3.1</td>
<td>FTP Proxy statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgApFTPReqProcessed</td>
<td>1.3.6.1.4.1.12356.101.10.111.3.1.1</td>
<td>Number of requests in this virtual domain processed by the FTP proxy since start up.</td>
</tr>
<tr>
<td>fgApFTPConnections</td>
<td>1.3.6.1.4.1.12356.101.10.111.4</td>
<td>FTP proxy current connections.</td>
</tr>
<tr>
<td>fgAppExplicitProxy</td>
<td>1.3.6.1.4.1.12356.101.10.112</td>
<td></td>
</tr>
<tr>
<td>fgExplicitProxyInfo</td>
<td>1.3.6.1.4.1.12356.101.10.112.1</td>
<td></td>
</tr>
<tr>
<td>fgExplicitProxyUpTime</td>
<td>1.3.6.1.4.1.12356.101.10.112.1.1</td>
<td>Explicit proxy up-time (in seconds).</td>
</tr>
<tr>
<td>fgExplicitProxyMemUsage</td>
<td>1.3.6.1.4.1.12356.101.10.112.1.2</td>
<td>Explicit proxy memory usage (percentage of system total).</td>
</tr>
<tr>
<td>fgExplicitProxyRequests</td>
<td>1.3.6.1.4.1.12356.101.10.112.1.3</td>
<td>Explicit proxy total number of requests.</td>
</tr>
<tr>
<td>fgExplicitProxyStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.112.2</td>
<td>A table of explicit proxy statistics per virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.112.2.1</td>
<td>Explicit proxy statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyUsers</td>
<td>1.3.6.1.4.1.12356.101.10.112.2.1.1</td>
<td>Number of current users in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxySessions</td>
<td>1.3.6.1.4.1.12356.101.10.112.2.1.2</td>
<td>Number of current sessions in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyScanStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.112.3</td>
<td>A table of explicit proxy scan statistics per virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyScanStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.112.3.1</td>
<td>Explicit proxy scan statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyScanStatsDisp</td>
<td>1.3.6.1.4.1.12356.101.10.112.3.1.1</td>
<td>Disposition of an scan result.</td>
</tr>
<tr>
<td>fgExplicitProxyVirus</td>
<td>1.3.6.1.4.1.12356.101.10.112.3.1.2</td>
<td>Number of viruses in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyBannedWords</td>
<td>1.3.6.1.4.1.12356.101.10.112.3.1.3</td>
<td>Number of elements containing banned words in this virtual domain.</td>
</tr>
</tbody>
</table>
Table 16: OIDs for the Fortinet-FortiGate-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgExplicitProxyPolicy</td>
<td>1.3.6.1.4.1.12356.101.10.112.3.1.4</td>
<td>Number of elements violating policy (e.g. filename or file type rules) in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyOversized</td>
<td>1.3.6.1.4.1.12356.101.10.112.3.1.5</td>
<td>Number of oversized elements in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyArchNest</td>
<td>1.3.6.1.4.1.12356.101.10.112.3.1.6</td>
<td>Number of too deeply nested archives in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyArchSize</td>
<td>1.3.6.1.4.1.12356.101.10.112.3.1.7</td>
<td>Number of archives that decompress beyond size limit in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyArchEncrypted</td>
<td>1.3.6.1.4.1.12356.101.10.112.3.1.8</td>
<td>Number of encrypted archives in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyArchMultiPart</td>
<td>1.3.6.1.4.1.12356.101.10.112.3.1.9</td>
<td>Number of multipart archives in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyArchUnsupported</td>
<td>1.3.6.1.4.1.12356.101.10.112.3.1.10</td>
<td>Number of archives with unsupported (but known) formats in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyArchBomb</td>
<td>1.3.6.1.4.1.12356.101.10.112.3.1.11</td>
<td>Number of archive bombs in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyArchCorrupt</td>
<td>1.3.6.1.4.1.12356.101.10.112.3.1.12</td>
<td>Number of corrupt archives in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyScriptStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.112.4</td>
<td>A table of explicit proxy script filtering statistics per virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyScriptStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.112.4.1</td>
<td>Explicit proxy scan statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyFilteredApplets</td>
<td>1.3.6.1.4.1.12356.101.10.112.4.1.1</td>
<td>Number of applets filtered from files in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyFilteredActiveX</td>
<td>1.3.6.1.4.1.12356.101.10.112.4.1.2</td>
<td>Number of ActiveX scripts filtered from files in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyFilteredJScript</td>
<td>1.3.6.1.4.1.12356.101.10.112.4.1.3</td>
<td>Number of JScript scripts filtered from files in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyFilteredJS</td>
<td>1.3.6.1.4.1.12356.101.10.112.4.1.4</td>
<td>Number of JavaScript scripts filtered from files in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyFilteredVBS</td>
<td>1.3.6.1.4.1.12356.101.10.112.4.1.5</td>
<td>Number of Visual Basic scripts filtered from files in this virtual domain.</td>
</tr>
</tbody>
</table>
Table 16: OIDs for the Fortinet-FortiGate-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgExplicitProxyFilteredOthScript</td>
<td>.3.6.1.4.1.12356.101.10.112.4.1.6</td>
<td>Number of other types of scripts filtered from files in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.112.5</td>
<td>A table of explicit proxy policy enforcement statistics per virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.112.5.1</td>
<td>Explicit proxy scan statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyBlockedDLP</td>
<td>1.3.6.1.4.1.12356.101.10.112.5.1.1</td>
<td>Number of elements blocked due to Data Leak Prevention in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyBlockedConType</td>
<td>1.3.6.1.4.1.12356.101.10.112.5.1.2</td>
<td>Number of elements blocked due to Content-Type filtering rules in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyExaminedURLs</td>
<td>1.3.6.1.4.1.12356.101.10.112.5.1.3</td>
<td>Number of URLs inspected against filtering rules in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyAllowedURLs</td>
<td>1.3.6.1.4.1.12356.101.10.112.5.1.4</td>
<td>Number of URLs explicitly allowed due to filtering rules in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyBlockedURLs</td>
<td>1.3.6.1.4.1.12356.101.10.112.5.1.5</td>
<td>Number of URLs explicitly blocked due to filtering rules in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyLoggedURLs</td>
<td>1.3.6.1.4.1.12356.101.10.112.5.1.6</td>
<td>Number of URLs logged due to filtering rules in this virtual domain.</td>
</tr>
<tr>
<td>fgExplicitProxyOverriddenURLs</td>
<td>1.3.6.1.4.1.12356.101.10.112.5.1.7</td>
<td>Number of URLs access due to overriding filtering rules in this virtual domain.</td>
</tr>
<tr>
<td>fgAppWebCache</td>
<td>1.3.6.1.4.1.12356.101.10.113</td>
<td></td>
</tr>
<tr>
<td>fgWebCacheInfo</td>
<td>1.3.6.1.4.1.12356.101.10.113.1</td>
<td></td>
</tr>
<tr>
<td>fgWebCacheRAMLimit</td>
<td>1.3.6.1.4.1.12356.101.10.113.1.1</td>
<td>RAM available for web cache in bytes.</td>
</tr>
<tr>
<td>fgWebCacheRAMUsage</td>
<td>1.3.6.1.4.1.12356.101.10.113.1.2</td>
<td>RAM used by web cache in bytes.</td>
</tr>
<tr>
<td>fgWebCacheRAMHits</td>
<td>1.3.6.1.4.1.12356.101.10.113.1.3</td>
<td>Number of cache hits in RAM since last reset.</td>
</tr>
<tr>
<td>fgWebCacheRAMMisses</td>
<td>1.3.6.1.4.1.12356.101.10.113.1.4</td>
<td>Number of cache misses in RAM since last reset.</td>
</tr>
<tr>
<td>fgWebCacheRequests</td>
<td>1.3.6.1.4.1.12356.101.10.113.1.5</td>
<td>Number of cache requests since last reset.</td>
</tr>
<tr>
<td>fgWebCacheBypass</td>
<td>1.3.6.1.4.1.12356.101.10.113.1.6</td>
<td>Number of cache bypasses since last reset.</td>
</tr>
<tr>
<td>MIB Field</td>
<td>OID</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>fgWebCacheUpTime</td>
<td>1.3.6.1.4.1.12356.101.10.113.1.7</td>
<td>Web Cache up-time (in seconds).</td>
</tr>
<tr>
<td>fgWebCacheDiskStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.113.2.2</td>
<td>A table of the Web Cache disk statistics per disk.</td>
</tr>
<tr>
<td>fgWebCacheDiskStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.113.2.1.1</td>
<td>The Web Cache disk statistics for a particular disk.</td>
</tr>
<tr>
<td>fgWebCacheDisk</td>
<td>1.3.6.1.4.1.12356.101.10.113.2.1.1.1</td>
<td>The Web Cache Disk index.</td>
</tr>
<tr>
<td>fgWebCacheDiskLimit</td>
<td>1.3.6.1.4.1.12356.101.10.113.2.1.2.2</td>
<td>The about of storage (in bytes) available for the Web Cache on a particular disk.</td>
</tr>
<tr>
<td>fgWebCacheDiskUsage</td>
<td>1.3.6.1.4.1.12356.101.10.113.2.1.3.3</td>
<td>The about of storage (in bytes) in use by the Web Cache on a particular disk.</td>
</tr>
<tr>
<td>fgWebCacheDiskHits</td>
<td>1.3.6.1.4.1.12356.101.10.113.2.1.4.4</td>
<td>The number of cache hits on a particular disk.</td>
</tr>
<tr>
<td>fgWebCacheDiskMisses</td>
<td>1.3.6.1.4.1.12356.101.10.113.2.1.5.5</td>
<td>The number of cache misses on a particular disk.</td>
</tr>
<tr>
<td>fgAppWanOpt</td>
<td>1.3.6.1.4.1.12356.101.10.114.1</td>
<td></td>
</tr>
<tr>
<td>fgWanOptInfo</td>
<td>1.3.6.1.4.1.12356.101.10.114.1</td>
<td></td>
</tr>
<tr>
<td>fgMemCacheLimit</td>
<td>1.3.6.1.4.1.12356.101.10.114.1.1</td>
<td>RAM available for mem cache in bytes.</td>
</tr>
<tr>
<td>fgMemCacheUsage</td>
<td>1.3.6.1.4.1.12356.101.10.114.1.2</td>
<td>RAM used by mem cache in bytes.</td>
</tr>
<tr>
<td>fgMemCacheHits</td>
<td>1.3.6.1.4.1.12356.101.10.114.1.3</td>
<td>Number of hits in mem cache since last reset.</td>
</tr>
<tr>
<td>fgMemCacheMisses</td>
<td>1.3.6.1.4.1.12356.101.10.114.1.4</td>
<td>Number of misses in mem cache since last reset.</td>
</tr>
<tr>
<td>fgByteCacheRAMLimit</td>
<td>1.3.6.1.4.1.12356.101.10.114.1.5</td>
<td>RAM available for byte cache in bytes.</td>
</tr>
<tr>
<td>fgByteCacheRAMUsage</td>
<td>1.3.6.1.4.1.12356.101.10.114.1.6</td>
<td>RAM used by byte cache in bytes.</td>
</tr>
<tr>
<td>fgWanOptUpTime</td>
<td>1.3.6.1.4.1.12356.101.10.114.1.7</td>
<td>Wan Optimization up-time (in seconds).</td>
</tr>
<tr>
<td>fgWanOptStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.114.2</td>
<td>A table of WAN optimization statistics per virtual domain.</td>
</tr>
<tr>
<td>fgWanOptStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.114.2.1</td>
<td>WAN optimization statistics for a particular virtual domain.</td>
</tr>
<tr>
<td>fgWanOptTunnels</td>
<td>1.3.6.1.4.1.12356.101.10.114.2.1.1</td>
<td>Number of current tunnels in this virtual domain.</td>
</tr>
<tr>
<td>fgWanOptLANBytesIn</td>
<td>1.3.6.1.4.1.12356.101.10.114.2.1.2</td>
<td>Number of bytes received on LAN in last 5 seconds.</td>
</tr>
<tr>
<td>fgWanOptLANBytesOut</td>
<td>1.3.6.1.4.1.12356.101.10.114.2.1.3</td>
<td>Number of bytes sent on LAN in last 5 seconds.</td>
</tr>
<tr>
<td>MIB Field</td>
<td>OID</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>fgWanOptWANBytesIn</td>
<td>1.3.6.1.4.1.12356.101.10.114.2.1.4</td>
<td>Number of bytes received on WAN in last 5 seconds.</td>
</tr>
<tr>
<td>fgWanOptWANBytesOut</td>
<td>1.3.6.1.4.1.12356.101.10.114.2.1.5</td>
<td>Number of bytes sent on WAN in last 5 seconds.</td>
</tr>
<tr>
<td>fgWanOptHistoryStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.114.3</td>
<td>A table of the WAN optimization history per protocol.</td>
</tr>
<tr>
<td>fgWanOptHistoryStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.114.3.1</td>
<td>The WAN optimization history for a particular virtual domain, period, and protocol.</td>
</tr>
<tr>
<td>fgWanOptHistPeriod</td>
<td>1.3.6.1.4.1.12356.101.10.114.3.1.1</td>
<td>WAN optimization table entry period.</td>
</tr>
<tr>
<td>fgWanOptProtocol</td>
<td>1.3.6.1.4.1.12356.101.10.114.3.1.2</td>
<td>Internal WAN optimization table entry protocol.</td>
</tr>
<tr>
<td>fgWanOptReductionRate</td>
<td>1.3.6.1.4.1.12356.101.10.114.3.1.3</td>
<td>Reduction rate achieved by WAN optimization.</td>
</tr>
<tr>
<td>fgWanOptLanTraffic</td>
<td>1.3.6.1.4.1.12356.101.10.114.3.1.4</td>
<td>Number of bytes transferred via LAN.</td>
</tr>
<tr>
<td>fgWanOptWanTraffic</td>
<td>1.3.6.1.4.1.12356.101.10.114.3.1.5</td>
<td>Number of bytes transferred via WAN.</td>
</tr>
<tr>
<td>fgWanOptTrafficStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.114.4</td>
<td>A table of the WAN optimization traffic for a particular virtual domain and protocol.</td>
</tr>
<tr>
<td>fgWanOptTrafficStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.114.4.1</td>
<td>The WAN optimization history for a particular protocol.</td>
</tr>
<tr>
<td>fgWanOptLanInTraffic</td>
<td>1.3.6.1.4.1.12356.101.10.114.4.1.1</td>
<td>Amount of traffic received from the LAN by WAN optimization.</td>
</tr>
<tr>
<td>fgWanOptLanOutTraffic</td>
<td>1.3.6.1.4.1.12356.101.10.114.4.1.2</td>
<td>Amount of traffic sent to the LAN by WAN optimization.</td>
</tr>
<tr>
<td>fgWanOptWanInTraffic</td>
<td>1.3.6.1.4.1.12356.101.10.114.4.1.3</td>
<td>Amount of traffic received from the WAN by WAN optimization.</td>
</tr>
<tr>
<td>fgWanOptWanOutTraffic</td>
<td>1.3.6.1.4.1.12356.101.10.114.4.1.4</td>
<td>Amount of traffic sent to the WAN by WAN optimization.</td>
</tr>
<tr>
<td>fgWanOptDiskStatsTable</td>
<td>1.3.6.1.4.1.12356.101.10.114.5</td>
<td>A table of the Web Cache disk statistics per disk.</td>
</tr>
<tr>
<td>fgWanOptDiskStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.10.114.5.1</td>
<td>The Web Cache disk statistics for a particular disk.</td>
</tr>
<tr>
<td>fgWanOptDisk</td>
<td>1.3.6.1.4.1.12356.101.10.114.5.1.1</td>
<td>The Web Cache Disk index.</td>
</tr>
<tr>
<td>fgWanOptDiskLimit</td>
<td>1.3.6.1.4.1.12356.101.10.114.5.1.2</td>
<td>The about of storage (in bytes) available for the Web Cache on a particular disk.</td>
</tr>
</tbody>
</table>
Table 16: OIDs for the Fortinet-FortiGate-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgWanOptDiskUsage</td>
<td>1.3.6.1.4.1.12356.101.10.114.5.1.3</td>
<td>The about of storage (in bytes) in use by the Web Cache on a particular disk.</td>
</tr>
<tr>
<td>fgWanOptDiskHits</td>
<td>1.3.6.1.4.1.12356.101.10.114.5.1.4</td>
<td>The number of cache hits on a particular disk.</td>
</tr>
<tr>
<td>fgWanOptDiskMisses</td>
<td>1.3.6.1.4.1.12356.101.10.114.5.1.5</td>
<td>The number of cache misses on a particular disk.</td>
</tr>
<tr>
<td>Protocol and Session Table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fgNetProto</td>
<td>1.3.6.1.4.1.12356.101.11</td>
<td></td>
</tr>
<tr>
<td>fgNetProtoInfo</td>
<td>1.3.6.1.4.1.12356.101.11.1</td>
<td></td>
</tr>
<tr>
<td>fgNetProtoTables</td>
<td>1.3.6.1.4.1.12356.101.11.2</td>
<td></td>
</tr>
<tr>
<td>fgIpSessTable</td>
<td>1.3.6.1.4.1.12356.101.11.2.1</td>
<td></td>
</tr>
<tr>
<td>fgIpSessEntry</td>
<td>1.3.6.1.4.1.12356.101.11.2.1.1</td>
<td>Information on a specific session, including source and destination.</td>
</tr>
<tr>
<td>fgIpSessIndex</td>
<td>1.3.6.1.4.1.12356.101.11.2.1.1.1</td>
<td>An index value that uniquely identifies an IP session within the fgIpSessTable.</td>
</tr>
<tr>
<td>fgIpSessProto</td>
<td>1.3.6.1.4.1.12356.101.11.2.1.1.2</td>
<td>The protocol the session is using (IP, TCP, UDP, etc.).</td>
</tr>
<tr>
<td>fgIpSessFromAddr</td>
<td>1.3.6.1.4.1.12356.101.11.2.1.1.3</td>
<td>Source IP address (IPv4 only) of the session.</td>
</tr>
<tr>
<td>fgIpSessFromPort</td>
<td>1.3.6.1.4.1.12356.101.11.2.1.1.4</td>
<td>Source port number (UDP and TCP only) of the session.</td>
</tr>
<tr>
<td>fgIpSessToAddr</td>
<td>1.3.6.1.4.1.12356.101.11.2.1.1.5</td>
<td>Destination IP address (IPv4 only) of the session.</td>
</tr>
<tr>
<td>fgIpSessToPort</td>
<td>1.3.6.1.4.1.12356.101.11.2.1.1.6</td>
<td>Destination Port number (UDP and TCP only) of the session.</td>
</tr>
<tr>
<td>fgIpSessExp</td>
<td>1.3.6.1.4.1.12356.101.11.2.1.1.7</td>
<td>Number of seconds remaining before the session expires (if idle).</td>
</tr>
<tr>
<td>fgIpSessVdom</td>
<td>1.3.6.1.4.1.12356.101.11.2.1.1.8</td>
<td>Virtual domain the session is part of. This index corresponds to the index used by fgVdTable.</td>
</tr>
<tr>
<td>fgIpSessStatsTable</td>
<td>1.3.6.1.4.1.12356.101.11.2.2</td>
<td>IP session statistics table.</td>
</tr>
<tr>
<td>fgIpSessStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.11.2.2.1</td>
<td>IP session statistics on a virtual domain.</td>
</tr>
<tr>
<td>fgIpSessNumber</td>
<td>1.3.6.1.4.1.12356.101.11.2.2.1.1</td>
<td>Current number of sessions on the virtual domain.</td>
</tr>
</tbody>
</table>

VPN

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgVPN</td>
<td>1.3.6.1.4.1.12356.101.12</td>
<td></td>
</tr>
<tr>
<td>fgVpnInfo</td>
<td>1.3.6.1.4.1.12356.101.12.1</td>
<td></td>
</tr>
</tbody>
</table>
Table 16: OIDs for the Fortinet-FortiGate-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgVpnTables</td>
<td>1.3.6.1.4.1.12356.101.12.2</td>
<td></td>
</tr>
<tr>
<td>fgVpnDialupTable</td>
<td>1.3.6.1.4.1.12356.101.12.2.1</td>
<td>Dial-up VPN peers information.</td>
</tr>
<tr>
<td>fgVpnDialupEntry</td>
<td>1.3.6.1.4.1.12356.101.12.2.1.1</td>
<td>Dial-up VPN peer info.</td>
</tr>
<tr>
<td>fgVpnDialupIndex</td>
<td>1.3.6.1.4.1.12356.101.12.2.1.1.1</td>
<td>An index value that uniquely identifies a VPN dial-up peer within the fgVpnDialupTable.</td>
</tr>
<tr>
<td>fgVpnDialupGateway</td>
<td>1.3.6.1.4.1.12356.101.12.2.1.1.2</td>
<td>Remote gateway IP address of the tunnel.</td>
</tr>
<tr>
<td>fgVpnDialupLifetime</td>
<td>1.3.6.1.4.1.12356.101.12.2.1.1.3</td>
<td>Tunnel lifetime (seconds) of the tunnel.</td>
</tr>
<tr>
<td>fgVpnDialupTimeout</td>
<td>1.3.6.1.4.1.12356.101.12.2.1.1.4</td>
<td>Time before the next key exchange (seconds) of the tunnel.</td>
</tr>
<tr>
<td>fgVpnDialupSrcBegin</td>
<td>1.3.6.1.4.1.12356.101.12.2.1.1.5</td>
<td>Remote subnet address of the tunnel.</td>
</tr>
<tr>
<td>fgVpnDialupSrcEnd</td>
<td>1.3.6.1.4.1.12356.101.12.2.1.1.6</td>
<td>Remote subnet mask of the tunnel.</td>
</tr>
<tr>
<td>fgVpnDialupDstAddr</td>
<td>1.3.6.1.4.1.12356.101.12.2.1.1.7</td>
<td>Local subnet address of the tunnel.</td>
</tr>
<tr>
<td>fgVpnDialupVdom</td>
<td>1.3.6.1.4.1.12356.101.12.2.1.1.8</td>
<td>Virtual domain tunnel is part of. This index corresponds to the index used by fgVdTable.</td>
</tr>
<tr>
<td>fgVpnDialupInOctets</td>
<td>1.3.6.1.4.1.12356.101.12.2.1.1.9</td>
<td>Number of bytes received on tunnel since instantiation.</td>
</tr>
<tr>
<td>fgVpnDialupOutOctets</td>
<td>1.3.6.1.4.1.12356.101.12.2.1.1.10</td>
<td>Number of bytes sent on tunnel since instantiation.</td>
</tr>
<tr>
<td>fgVpnTunTable</td>
<td>1.3.6.1.4.1.12356.101.12.2.2</td>
<td>Table of non-dial-up VPN tunnels.</td>
</tr>
<tr>
<td>fgVpnTunEntry</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1</td>
<td>Tunnel VPN peer info.</td>
</tr>
<tr>
<td>fgVpnTunEntIndex</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.1</td>
<td>An index value that uniquely identifies a VPN tunnel within the fgVpnTunTable.</td>
</tr>
<tr>
<td>fgVpnTunEntPhase1Name</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.2</td>
<td>Descriptive name of phase1 configuration for the tunnel.</td>
</tr>
<tr>
<td>fgVpnTunentPhase2Name</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.3</td>
<td>Descriptive name of phase2 configuration for the tunnel.</td>
</tr>
<tr>
<td>fgVpnTunEntRemGwypIp</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.4</td>
<td>IP of remote gateway used by the tunnel.</td>
</tr>
<tr>
<td>fgVpnTunEntRemGwyPort</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.5</td>
<td>Port of remote gateway used by tunnel, if UDP.</td>
</tr>
<tr>
<td>fgVpnTunEntLocGwylp</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.6</td>
<td>IP of local gateway used by the tunnel.</td>
</tr>
</tbody>
</table>
Table 16: OIDs for the Fortinet-FortiGate-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgVpnTunEntLocGwyPort</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.7</td>
<td>Port of local gateway used by tunnel, if UDP.</td>
</tr>
<tr>
<td>fgVpnTunEntSelectorSrcBeginIp</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.8</td>
<td>Beginning of address range of source selector.</td>
</tr>
<tr>
<td>fgVpnTunEntSelectorSrcEndIp</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.9</td>
<td>End of address range of source selector.</td>
</tr>
<tr>
<td>fgVpnTunEntSelectorSrcPort</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.10</td>
<td>Source selector port.</td>
</tr>
<tr>
<td>fgVpnTunEntSelectorDstBeginIp</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.11</td>
<td>Beginning of address range of destination selector.</td>
</tr>
<tr>
<td>fgVpnTunEntSelectorDstEndIp</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.12</td>
<td>End of address range of destination selector.</td>
</tr>
<tr>
<td>fgVpnTunEntSelectorDstPort</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.13</td>
<td>Destination selector port.</td>
</tr>
<tr>
<td>fgVpnTunEntSelectorProto</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.14</td>
<td>Protocol number for selector.</td>
</tr>
<tr>
<td>fgVpnTunEntLifeSecs</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.15</td>
<td>Lifetime of tunnel in seconds, if time based lifetime used.</td>
</tr>
<tr>
<td>fgVpnTunEntLifeBytes</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.16</td>
<td>Lifetime of tunnel in bytes, if byte transfer based lifetime used.</td>
</tr>
<tr>
<td>fgVpnTunEntTimeout</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.17</td>
<td>Timeout of tunnel in seconds.</td>
</tr>
<tr>
<td>fgVpnTunEntInOctets</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.18</td>
<td>Number of bytes received on tunnel.</td>
</tr>
<tr>
<td>fgVpnTunEntOutOctets</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.19</td>
<td>Number of bytes sent out on tunnel.</td>
</tr>
<tr>
<td>fgVpnTunEntStatus</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.20</td>
<td>Current status of tunnel (up or down).</td>
</tr>
<tr>
<td>fgVpnTunEntVdom</td>
<td>1.3.6.1.4.1.12356.101.12.2.2.1.21</td>
<td>Virtual domain the tunnel is part of. This index corresponds to the index used by fgVdTable.</td>
</tr>
<tr>
<td>fgVpnSslStatsTable</td>
<td>1.3.6.1.4.1.12356.101.12.2.3</td>
<td>SSL VPN statistics table.</td>
</tr>
<tr>
<td>ffVpnSslStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.12.2.3.1</td>
<td>SSL VPN statistics for a given virtual domain.</td>
</tr>
<tr>
<td>fgVpnSslState</td>
<td>1.3.6.1.4.1.12356.101.12.2.3.1.1</td>
<td>Whether SSL-VPN is enabled on this virtual domain.</td>
</tr>
<tr>
<td>fgVpnSslStatsLoginUsers</td>
<td>1.3.6.1.4.1.12356.101.12.2.3.1.2</td>
<td>The current number of users logged in through SSL-VPN tunnels in the virtual domain.</td>
</tr>
<tr>
<td>fgVpnSslStatsMaxUsers</td>
<td>1.3.6.1.4.1.12356.101.12.2.3.1.3</td>
<td>The maximum number of total users that can be logged in at any one time on the virtual domain.</td>
</tr>
<tr>
<td>MIB Field</td>
<td>OID</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>fgVpnSslStatsActiveWebSessions</td>
<td>1.3.6.1.4.1.12356.101.12.2.3.1.4</td>
<td>The current number of active SSL web sessions in the virtual domain.</td>
</tr>
<tr>
<td>fgVpnSslStatsMaxWebSessions</td>
<td>1.3.6.1.4.1.12356.101.12.2.3.1.5</td>
<td>The maximum number of active SSL web sessions at any one time within the virtual domain.</td>
</tr>
<tr>
<td>fgVpnSslStatsActiveTunnels</td>
<td>1.3.6.1.4.1.12356.101.12.2.3.1.6</td>
<td>The current number of active SSL tunnels in the virtual domain.</td>
</tr>
<tr>
<td>fgVpnSslStatsMaxTunnels</td>
<td>1.3.6.1.4.1.12356.101.12.2.3.1.7</td>
<td>The maximum number of active SSL tunnels at any one time in the virtual domain.</td>
</tr>
<tr>
<td>fgVpnSslTunnelTable</td>
<td>1.3.6.1.4.1.12356.101.12.2.4</td>
<td>A list of active SSL VPN tunnel entries.</td>
</tr>
<tr>
<td>fgVpnSslTunnelEntry</td>
<td>1.3.6.1.4.1.12356.101.12.2.4.1</td>
<td>An SSL VPN tunnel entry containing connection information and traffic statistics.</td>
</tr>
<tr>
<td>fgVpnSslTunnelIndex</td>
<td>1.3.6.1.4.1.12356.101.12.2.4.1.1</td>
<td>An index value that uniquely identifies an active SSL VPN tunnel within the fgVpnSslTunnelTable.</td>
</tr>
<tr>
<td>fgVpnSslTunnelVdom</td>
<td>1.3.6.1.4.1.12356.101.12.2.4.1.2</td>
<td>The index of the virtual domain this tunnel belongs to. This index corresponds to the index used by fgVdTable.</td>
</tr>
<tr>
<td>fgVpnSslTunnelUserName</td>
<td>1.3.6.1.4.1.12356.101.12.2.4.1.3</td>
<td>The user name used to authenticate the tunnel.</td>
</tr>
<tr>
<td>fgVpnbSslTunnelSrcIp</td>
<td>1.3.6.1.4.1.12356.101.12.2.4.1.4</td>
<td>The source IP address of this tunnel.</td>
</tr>
<tr>
<td>fgVpnSslTunnelIp</td>
<td>1.3.6.1.4.1.12356.101.12.2.4.1.5</td>
<td>The connection IP address of this tunnel.</td>
</tr>
<tr>
<td>fgVpnSslTunnelUpTime</td>
<td>1.3.6.1.4.1.12356.101.12.2.4.1.6</td>
<td>The up-time of this tunnel in seconds.</td>
</tr>
<tr>
<td>fgVpnSslTunnelBytesIn</td>
<td>1.3.6.1.4.1.12356.101.12.2.4.1.7</td>
<td>The number of incoming bytes of L2 traffic through this tunnel since it was established.</td>
</tr>
<tr>
<td>fgVpnSslTunnelBytesOut</td>
<td>1.3.6.1.4.1.12356.101.12.2.4.1.8</td>
<td>The number of outgoing bytes of L2 traffic through this tunnel since it was established.</td>
</tr>
<tr>
<td>fgVpnTrapObjects</td>
<td>1.3.6.1.4.1.12356.101.12.3</td>
<td>Local gateway IP address. Used in VPN related traps.</td>
</tr>
<tr>
<td>fgVpnTrapLocalGateway</td>
<td>1.3.6.1.4.1.12356.101.12.3.2</td>
<td></td>
</tr>
<tr>
<td>MIB Field</td>
<td>OID</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>fgVpnTrapRemoteGateway</td>
<td>1.3.6.1.4.1.12356.101.12.3.3</td>
<td>Remote gateway IP address. Used in VPN related traps.</td>
</tr>
<tr>
<td>High Availability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fgHighAvailability</td>
<td>1.3.6.1.4.1.12356.101.13</td>
<td></td>
</tr>
<tr>
<td>fgHaInfo</td>
<td>1.3.6.1.4.1.12356.101.13.1</td>
<td></td>
</tr>
<tr>
<td>fgHaSystemMode</td>
<td>1.3.6.1.4.1.12356.101.13.1.1</td>
<td>High-availability mode (Standalone, A-A or A-P).</td>
</tr>
<tr>
<td>fgHaGroupId</td>
<td>1.3.6.1.4.1.12356.101.13.1.2</td>
<td>HA cluster group ID device is configured for.</td>
</tr>
<tr>
<td>fgHaPriority</td>
<td>1.3.6.1.4.1.12356.101.13.1.3</td>
<td>HA clustering priority of the device (default = 127).</td>
</tr>
<tr>
<td>fgHaOverride</td>
<td>1.3.6.1.4.1.12356.101.13.1.4</td>
<td>Status of a master override flag.</td>
</tr>
<tr>
<td>fgHaAutoSync</td>
<td>1.3.6.1.4.1.12356.101.13.1.5</td>
<td>Configuration of an automatic configuration synchronization (enabled or disabled).</td>
</tr>
<tr>
<td>fgHaSchedule</td>
<td>1.3.6.1.4.1.12356.101.13.1.6</td>
<td>Load-balancing schedule of cluster (in A-A mode).</td>
</tr>
<tr>
<td>fgHaGroupName</td>
<td>1.3.6.1.4.1.12356.101.13.1.7</td>
<td>Ha cluster group name.</td>
</tr>
<tr>
<td>fgHaTables</td>
<td>1.3.6.1.4.1.12356.101.13.2</td>
<td></td>
</tr>
<tr>
<td>fgHaStatsTable</td>
<td>1.3.6.1.4.1.12356.101.13.2.1</td>
<td>Some useful statistics for all members of a cluster. This table is also available in standalone mode.</td>
</tr>
<tr>
<td>fgHaStatsEntry</td>
<td>1.3.6.1.4.1.12356.101.13.2.1.1</td>
<td>Statistics for a particular HA cluster’s unit.</td>
</tr>
<tr>
<td>fgHaStatsIndex</td>
<td>1.3.6.1.4.1.12356.101.13.2.1.1.1</td>
<td>An index value that uniquely identifies an unit in the HA Cluster.</td>
</tr>
<tr>
<td>fgHaStatsSerial</td>
<td>1.3.6.1.4.1.12356.101.13.2.1.1.2</td>
<td>Serial number of the HA cluster member for this row.</td>
</tr>
<tr>
<td>fgHaStatsCpuUsage</td>
<td>1.3.6.1.4.1.12356.101.13.2.1.1.3</td>
<td>CPU usage of the specified cluster member (percentage).</td>
</tr>
<tr>
<td>fgHaStatsMemUsage</td>
<td>1.3.6.1.4.1.12356.101.13.2.1.1.4</td>
<td>Memory usage of the specified cluster member (percentage).</td>
</tr>
<tr>
<td>fgHaStatsNetUsage</td>
<td>1.3.6.1.4.1.12356.101.13.2.1.1.5</td>
<td>Network bandwidth usage of specified cluster member (kbps).</td>
</tr>
<tr>
<td>fgHaStatsSesCount</td>
<td>1.3.6.1.4.1.12356.101.13.2.1.1.6</td>
<td>Current session count of specified cluster member.</td>
</tr>
</tbody>
</table>
Table 16: OIDs for the Fortinet-FortiGate-MIB

<table>
<thead>
<tr>
<th>MIB Field</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgHaStatsPktCount</td>
<td>1.3.6.1.4.1.12356.101.13.2.1.1.7</td>
<td>Number of packets processed by the specified cluster member since start up.</td>
</tr>
<tr>
<td>fgHaStatsByteCount</td>
<td>1.3.6.1.4.1.12356.101.13.2.1.1.8</td>
<td>Number of bytes processed by the specified cluster member since start up.</td>
</tr>
<tr>
<td>fgHaStatsIdsCount</td>
<td>1.3.6.1.4.1.12356.101.13.2.1.1.9</td>
<td>Number of IDS/IPS events triggered on the specified cluster member since start up.</td>
</tr>
<tr>
<td>fgHaStatsAvCount</td>
<td>1.3.6.1.4.1.12356.101.13.2.1.1.10</td>
<td>Number of anti-virus events triggered on the specified cluster member since start up.</td>
</tr>
<tr>
<td>fgHaStatsHostname</td>
<td>1.3.6.1.4.1.12356.101.13.2.1.1.11</td>
<td>Host name of the specified cluster member.</td>
</tr>
<tr>
<td>fgHaTrapObjects</td>
<td>1.3.6.1.4.1.12356.101.13.3</td>
<td></td>
</tr>
<tr>
<td>fgHaTrapMemberSerial</td>
<td>1.3.6.1.4.1.12356.101.13.3.1</td>
<td>Serial number of an HA cluster member. Used to identify the origin of a trap when a cluster is configured.</td>
</tr>
<tr>
<td>fgFmTrapGroup</td>
<td>1.3.6.1.4.1.12356.101.100.1</td>
<td>Traps are intended for use in conjunction with a FortiManager.</td>
</tr>
<tr>
<td>fgFmTrapObjectGroup</td>
<td>1.3.6.1.4.1.12356.101.100.2</td>
<td>These objects support the traps in the fgFmTrapGroup.</td>
</tr>
<tr>
<td>fgAdminObjectGroup</td>
<td>1.3.6.1.4.1.12356.101.100.3</td>
<td>Objects pertaining to administration of the device.</td>
</tr>
<tr>
<td>fgSystemObjectGroup</td>
<td>1.3.6.1.4.1.12356.101.100.4</td>
<td>Objects pertaining to the system status of the device.</td>
</tr>
<tr>
<td>fgSoftwareObjectGroup</td>
<td>1.3.6.1.4.1.12356.101.100.5</td>
<td>Objects pertaining to software running on the device.</td>
</tr>
<tr>
<td>fgHwSensorsObjectGroup</td>
<td>1.3.6.1.4.1.12356.101.100.6</td>
<td>Object pertaining to hardware sensors on the device.</td>
</tr>
<tr>
<td>fgHighAvailabilityObjectGroup</td>
<td>1.3.6.1.4.1.12356.101.100.7</td>
<td>Objects pertaining to High Availability clustering of FortiGate devices.</td>
</tr>
<tr>
<td>fgVpnObjectGroup</td>
<td>1.3.6.1.4.1.12356.101.100.8</td>
<td>Objects pertaining to Virtual Private Networking on FortiGate devices.</td>
</tr>
<tr>
<td>fgFirewallObjectGroup</td>
<td>1.3.6.1.4.1.12356.101.100.9</td>
<td>Objects pertaining to Firewall functionality on FortiGate devices.</td>
</tr>
<tr>
<td>MIB Field</td>
<td>OID</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>fgAppServicesObjectGroup</td>
<td>1.3.6.1.4.1.12356.101.100.10</td>
<td>Objects pertaining to application proxy and filtering services on FortiGate devices.</td>
</tr>
<tr>
<td>fgAntivirusObjectGroup</td>
<td>1.3.6.1.4.1.12356.101.100.11</td>
<td>Objects pertaining to Antivirus services on FortiGate devices.</td>
</tr>
<tr>
<td>fgIntrusionPrevtObjectGroup</td>
<td>1.3.6.1.4.1.12356.101.100.12</td>
<td>Objects pertaining to Intrusion Detection and Prevention services on FortiGate devices.</td>
</tr>
<tr>
<td>fgWebFilterObjectGroup</td>
<td>1.3.6.1.4.1.12356.101.100.13</td>
<td>Objects pertaining to FortiGate and FortiGuard based Web Filtering services on FortiGate devices.</td>
</tr>
<tr>
<td>fgVirtualDomainObjectGroup</td>
<td>1.3.6.1.4.1.12356.101.100.14</td>
<td>Objects pertaining to Virtual Firewall Domain services on FortiGate devices.</td>
</tr>
<tr>
<td>fgAdministrationObjectGroup</td>
<td>1.3.6.1.4.1.12356.101.100.15</td>
<td>Objects pertaining to the administration of FortiGate device.</td>
</tr>
<tr>
<td>fgIntfObjectGroup</td>
<td>1.3.6.1.4.1.12356.101.100.16</td>
<td>Objects pertaining to the interface table of FortiGate device.</td>
</tr>
<tr>
<td>fgProcessorsObjectGroup</td>
<td>1.3.6.1.4.1.12356.101.100.17</td>
<td>Objects pertaining to the processors table of FortiGate device.</td>
</tr>
<tr>
<td>fgNotificationGropu</td>
<td>1.3.6.1.4.1.12356.101.100.18</td>
<td>Notifications that can be generated from a FortiGate device.</td>
</tr>
<tr>
<td>fgObsoleteNotificationsGroup</td>
<td>1.3.6.1.4.1.12356.101.100.19</td>
<td>Notifications that have been deprecated, but may still be generated by older models.</td>
</tr>
<tr>
<td>fgMIBCompliance</td>
<td>1.3.6.1.4.1.12356.101.100.100</td>
<td>Model and feature specific.</td>
</tr>
</tbody>
</table>
Multicast forwarding

Multicasting (also called IP multicasting) consists of using a single multicast source to send data to many receivers. Multicasting can be used to send data to many receivers simultaneously while conserving bandwidth and reducing network traffic. Multicasting can be used for one-way delivery of media streams to multiple receivers and for one-way data transmission for news feeds, financial information, and so on. Also RIPv2 uses multicasting to share routing table information.

A FortiGate unit can operate as a Protocol Independent Multicast (PIM) version 2 router. FortiGate units support PIM sparse mode (RFC 4601) and PIM dense mode (RFC 3973) and can service multicast servers or receivers on the network segment to which a FortiGate unit interface is connected. Multicast routing is not supported in transparent mode (TP mode).

To support PIM communications, the sending/receiving applications and all connecting PIM routers in between must be enabled with PIM version 2. PIM can use static routes, RIP, OSPF, or BGP to forward multicast packets to their destinations. To enable source-to-destination packet delivery, either sparse mode or dense mode must be enabled on the PIM-router interfaces. Sparse mode routers cannot send multicast messages to dense mode routers. In addition, if a FortiGate unit is located between a source and a PIM router, two PIM routers, or is connected directly to a receiver, you must create a security policy manually to pass encapsulated (multicast) packets or decapsulated data (IP traffic) between the source and destination.

A PIM domain is a logical area comprising a number of contiguous networks. The domain contains at least one Boot Strap Router (BSR), and if sparse mode is enabled, a number of Rendezvous Points (RPs) and Designated Routers (DRs). When PIM is enabled on a FortiGate unit, the FortiGate unit can perform any of these functions at any time as configured.

Sparse mode

Initially, all candidate BSRs in a PIM domain exchange bootstrap messages to select one BSR to which each RP sends the multicast address or addresses of the multicast group(s) that it can service. The selected BSR chooses one RP per multicast group and makes this information available to all of the PIM routers in the domain through bootstrap messages. PIM routers use the information to build packet distribution trees, which map each multicast group to a specific RP. Packet distribution trees may also contain information about the sources and receivers associated with particular multicast groups.

When a FortiGate unit interface is configured as a multicast interface, sparse mode is enabled on it by default to ensure that distribution trees are not built unless at least one downstream receiver requests multicast traffic from a specific source. If the sources of multicast traffic and their receivers are close to each other and the PIM domain contains a dense population of active receivers, you may choose to enable dense mode throughout the PIM domain instead.
An RP represents the root of a non-source-specific distribution tree to a multicast group. By joining and pruning the information contained in distribution trees, a single stream of multicast packets (for example, a video feed) originating from the source can be forwarded to a certain RP to reach a multicast destination.

Each PIM router maintains a Multicast Routing Information Base (MRIB) that determines to which neighboring PIM router join and prune messages are sent. An MRIB contains reverse-path information that reveals the path of a multicast packet from its source to the PIM router that maintains the MRIB.

To send multicast traffic, a server application sends IP traffic to a multicast group address. The locally elected DR registers the sender with the RP that is associated with the target multicast group. The RP uses its MRIB to forward a single stream of IP packets from the source to the members of the multicast group. The IP packets are replicated only when necessary to distribute the data to branches of the RP’s distribution tree.

To receive multicast traffic, a client application can use Internet Group Management Protocol (IGMP) version 1 (RFC 1112), 2 (RFC 2236), or 3 (RFC 3376) control messages to request the traffic for a particular multicast group. The locally elected DR receives the request and adds the host to the multicast group that is associated with the connected network segment by sending a join message towards the RP for the group. Afterward, the DR queries the hosts on the connected network segment continually to determine whether the hosts are active. When the DR no longer receives confirmation that at least one member of the multicast group is still active, the DR sends a prune message towards the RP for the group.

Dense mode

The packet organization used in sparse mode is also used in dense mode. When a multicast source begins to send IP traffic and dense mode is enabled, the closest PIM router registers the IP traffic from the multicast source (S) and forwards multicast packets to the multicast group address (G). All PIM routers initially broadcast the multicast packets throughout the PIM domain to ensure that all receivers that have requested traffic for multicast group address G can access the information if needed.

To forward multicast packets to specific destinations afterward, the PIM routers build distribution trees based on the information in multicast packets. Upstream PIM routers depend on prune/graft messages from downstream PIM routers to determine if receivers are actually present on directly connected network segments. The PIM routers exchange state refresh messages to update their distribution trees. FortiGate units store this state information in a Tree Information Base (TIB), which is used to build a multicast forwarding table. The information in the multicast forwarding table determines whether packets are forwarded downstream. The forwarding table is updated whenever the TIB is modified.

PIM routers receive data streams every few minutes and update their forwarding tables using the source (S) and multicast group (G) information in the data stream. Superfluous multicast traffic is stopped by PIM routers that do not have downstream receivers—PIM routers that do not manage multicast groups send prune messages to the upstream PIM routers. When a receiver requests traffic for multicast address G, the closest PIM router sends a graft message upstream to begin receiving multicast packets.

FortiGate units operating in NAT mode can also be configured as multicast routers. You can configure a FortiGate unit to be a Protocol Independent Multicast (PIM) router operating in Sparse Mode (SM) or Dense Mode (DM).
Multicast IP addresses

Multicast uses the Class D address space. The 224.0.0.0 to 239.255.255.255 IP address range is reserved for multicast groups. The multicast address range applies to multicast groups, not to the originators of multicast packets. Table 17 lists reserved multicast address ranges and describes what they are reserved for:

Table 17: Reserved Multicast address ranges

<table>
<thead>
<tr>
<th>Reserved Address Range</th>
<th>Use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.0.0.0 to 224.0.0.255</td>
<td>Used for network protocols on local networks. For more information, see RFC 1700.</td>
<td>In this range, packets are not forwarded by the router but remain on the local network. They have a Time to Live (TTL) of 1. These addresses are used for communicating routing information.</td>
</tr>
<tr>
<td>224.0.1.0 to 238.255.255.255</td>
<td>Global addresses used for multicasting data between organizations and across the Internet. For more information, see RFC 1700.</td>
<td>Some of these addresses are reserved, for example, 224.0.1.1 is used for Network Time Protocol (NTP).</td>
</tr>
<tr>
<td>239.0.0.0 to 239.255.255.255</td>
<td>Limited scope addresses used for local groups and organizations. For more information, see RFC 2365.</td>
<td>Routers are configured with filters to prevent multicasts to these addresses from leaving the local system.</td>
</tr>
</tbody>
</table>

PIM Support

A FortiGate unit can be configured to support PIM using the `config router multicast` CLI command. When PIM is enabled, the FortiGate unit allocates memory to manage mapping information. The FortiGate unit communicates with neighboring PIM routers to acquire mapping information and if required, processes the multicast traffic associated with specific multicast groups.

Client applications send multicast data by registering IP traffic with a PIM-enabled router. An end-user could type in a class D multicast group address, an alias for the multicast group address, or a call-conference number to initiate the session.

Rather than sending multiple copies of generated IP traffic to more than one specific IP destination address, PIM-enabled routers encapsulate the data and use the one multicast group address to forward multicast packets to multiple destinations. Because one destination address is used, a single stream of data can be sent. Client applications receive multicast data by requesting that the traffic destined for a certain multicast group address be delivered to them — end-users may use phone books, a menu of ongoing or future sessions, or some other method through a user interface to select the address of interest.
A class D address in the 224.0.0.0 to 239.255.255.255 range may be used as a multicast group address, subject to the rules assigned by the Internet Assigned Numbers Authority (IANA). All class D addresses must be assigned in advance. Because there is no way to determine in advance if a certain multicast group address is in use, collisions may occur (to resolve this problem, end-users may switch to a different multicast address).

To configure a PIM domain

1. If you will be using sparse mode, determine appropriate paths for multicast packets.
2. Make a note of the interfaces that will be PIM-enabled. These interfaces may run a unicast routing protocol.
3. If you will be using sparse mode and want multicast packets to be handled by specific (static) RPs, record the IP addresses of the PIM-enabled interfaces on those RPs.
4. Enable PIM version 2 on all participating routers between the source and receivers. On FortiGate units, use the `config router multicast` command to set global operating parameters.
5. Configure the PIM routers that have good connections throughout the PIM domain to be candidate BSRs.
6. If sparse mode is enabled, configure one or more of the PIM routers to be candidate RPs.
7. If required, adjust the default settings of PIM-enabled interface(s).

Multicast forwarding and FortiGate units

In both transparent mode and NAT mode you can configure FortiGate units to forward multicast traffic.

For a FortiGate unit to forward multicast traffic you must add FortiGate multicast security policies. Basic multicast security policies accept any multicast packets at one FortiGate interface and forward the packets out another FortiGate interface. You can also use multicast security policies to be selective about the multicast traffic that is accepted based on source and destination address, and to perform NAT on multicast packets.

In the example shown in Figure 13, a multicast source on the Marketing network with IP address 192.168.5.18 sends multicast packets to the members of network 239.168.4.0. At the FortiGate unit, the source IP address for multicast packets originating from workstation 192.168.5.18 is translated to 192.168.18.10. In this example, the FortiGate unit is not acting as a multicast router.

Multicast forwarding and RIPv2

RIPv2 uses multicast to share routing table information. If your FortiGate unit is installed on a network that includes RIPv2 routers, you must configure the FortiGate unit to forward multicast packets so that RIPv2 devices can share routing data through the FortiGate unit. No special FortiGate configuration is required to share RIPv2 data, you can simply use the information in the following sections to configure the FortiGate unit to forward multicast packets.
Figure 13: Example multicast network including a FortiGate unit that forwards multicast packets

Configuring FortiGate multicast forwarding

You configure FortiGate multicast forwarding from the Command Line Interface (CLI). Two steps are required:

- Adding multicast security policies
- Enabling multicast forwarding

This second step is only required if your FortiGate unit is operating in NAT mode. If your FortiGate unit is operating in transparent mode, adding a multicast policy enables multicast forwarding.

Adding multicast security policies

You need to add security policies to allow packets to pass from one interface to another. Multicast packets require multicast security policies. You add multicast security policies from the CLI using the `config firewall multicast-policy` command. As with unicast security policies, you specify the source and destination interfaces and optionally the allowed address ranges for the source and destination addresses of the packets.
You can also use multicast security policies to configure source NAT and destination NAT for multicast packets. For full details on the config firewall multicast-policy command, see the FortiGate CLI Reference.

Keep the following in mind when configuring multicast security policies:

- The matched forwarded (outgoing) IP multicast source IP address is changed to the configured IP address.
- Source and Destination interfaces are optional. If left blank, then the multicast will be forwarded to ALL interfaces.
- Source and Destination addresses are optional. If left unset, then it will mean ALL addresses.
- The nat keyword is optional. Use it when source address translation is needed.

Enabling multicast forwarding

Multicast forwarding is disabled by default. In NAT mode you must use the `multicast-forward` keyword of the `system settings` CLI command to enable multicast forwarding. When `multicast-forward` is enabled, the FortiGate unit forwards any multicast IP packets in which the TTL is 2 or higher to all interfaces and VLAN interfaces except the receiving interface. The TTL in the IP header will be reduced by 1. Even though the multicast packets are forwarded to all interfaces, you must add security policies to actually allow multicast packets through the FortiGate. In our example, the security policy allows multicast packets received by the internal interface to exit to the external interface.

Enter the following CLI command to enable multicast forwarding:

```
config system settings
  set multicast-forward enable
end
```

If multicast forwarding is disabled and the FortiGate unit drops packets that have multicast source or destination addresses.

You can also use the `multicast-ttl-notchange` keyword of the `system settings` command so that the FortiGate unit does not increase the TTL value for forwarded multicast packets. You should use this option only if packets are expiring before reaching the multicast router.

```
config system settings
  set multicast-ttl-notchange enable
end
```

In transparent mode, the FortiGate unit does not forward frames with multicast destination addresses. Multicast traffic such as the one used by routing protocols or streaming media may need to traverse the FortiGate unit, and should not be interfere with the communication. To avoid any issues during transmission, you can set up multicast security policies. These types of security policies can only be enabled using the CLI.
The CLI parameter multicast-skip-policy must be disabled when using multicast security policies. To disable enter the command

```
config system settings
set multicast-skip-policy disable
end
```

In this simple example, no check is performed on the source or destination interfaces. A multicast packet received on an interface is flooded unconditionally to all interfaces on the forwarding domain, except the incoming interface.

To enable the multicast policy

```
config firewall multicast-policy
edit 1
  set action accept
end
```

In this example, the multicast policy only applies to the source port of WAN1 and the destination port of Internal.

To enable the restrictive multicast policy

```
config firewall multicast-policy
edit 1
  set srcintf wan1
  set dstinf internal
  set action accept
end
```

In this example, packets are allowed to flow from WAN1 to Internal, and sourced by the address 172.20.120.129.

To enable the restrictive multicast policy

```
config firewall multicast-policy
edit 1
  set srcintf wan1
  set srcaddr 172.20.120.129 255.255.255.255
  set dstinf internal
  set action accept
end
```

This example shows how to configure the multicast security policy required for the configuration shown in Figure 13 on page 177. This policy accepts multicast packets that are sent from a PC with IP address 192.168.5.18 to destination address range 239.168.4.0. The policy allows the multicast packets to enter the internal interface and then exit the external interface. When the packets leave the external interface their source address is translated to 192.168.18.10

```
config firewall multicast-policy
edit 5
  set srcaddr 192.168.5.18 255.255.255.255
  set srcintf internal
  set destaddr 239.168.4.0 255.255.255.0
  set dstintf external
  set nat 192.168.18.10
end
```
This example shows how to configure a multicast security policy so that the FortiGate unit forwards multicast packets from a multicast Server with an IP 10.10.10.10 is broadcasting to address 225.1.1.1. This Server is on the network connected to the FortiGate DMZ interface.

```
config firewall multicast-policy
  edit 1
    set srcintf DMZ
    set srcaddr 10.10.10.10 255.255.255.255
    set dstintf Internal
    set dstaddr 225.1.1.1 255.255.255.255
    set action accept
  edit 2
    set action deny
end
```

Multicast routing examples

This section contains the following multicast routing configuration examples and information:

- Example FortiGate PIM-SM configuration using a static RP
- FortiGate PIM-SM debugging examples
- Example multicast destination NAT (DNAT) configuration
- Example PIM configuration that uses BSR to find the RP

Example FortiGate PIM-SM configuration using a static RP

The example Protocol Independent Multicast Sparse Mode (PIM-SM) configuration shown in Figure 14 has been tested for multicast interoperability using PIM-SM between Cisco 3750 switches running 12.2 and a FortiGate-800 running FortiOS v3.0 MR5 patch 1. In this configuration, the receiver receives the multicast stream when it joins the group 233.254.200.1.
The configuration uses a statically configured rendezvous point (RP) which resides on the Cisco_3750_1. Using a bootstrap router (BSR) was not tested in this example. See “Example PIM configuration that uses BSR to find the RP” on page 193 for an example that uses a BSR.

Configuration steps

The following procedures show how to configure the multicast configuration settings for the devices in the example configuration.

- Cisco_3750_1 router configuration
- Cisco_3750_2 router configuration
- To configure the FortiGate-800 unit
- Cisco_3750_3 router configuration

Cisco_3750_1 router configuration

```
version 12.2
!
hostname Cisco-3750-1
!
switch 1 provision ws-c3750-24ts
ip subnet-zero
ip routing
!
ip multicast-routing distributed
```
! spanning-tree mode pvst
no spanning-tree optimize bpdu transmission
spanning-tree extend system-id
!
interface Loopback0
 ip address 169.254.100.1 255.255.255.255
!
interface FastEthernet1/0/23
 switchport access vlan 182
 switchport mode access
!
interface FastEthernet1/0/24
 switchport access vlan 172
 switchport mode access
!
interface Vlan172
 ip address 10.31.138.1 255.255.255.0
 ip pim sparse-mode
 ip igmp query-interval 125
 ip mroute-cache distributed
!
interface Vlan182
 ip address 169.254.82.250 255.255.255.0
 ip pim sparse-mode
 ip mroute-cache distributed
!
ip classless
ip route 0.0.0.0 0.0.0.0 169.254.82.1
ip http server
ip pim rp-address 169.254.100.1 Source-RP
!
ip access-list standard Source-RP
 permit 233.254.200.0 0.0.0.255

Cisco_3750_2 router configuration

version 12.2
!
hostname Cisco-3750-2
!
switch 1 provision ws-c3750-24ts
ip subnet-zero
ip routing
!
ip multicast-routing distributed
!
spanning-tree mode pvst
no spanning-tree optimize bpdu transmission
spanning-tree extend system-id
!
interface FastEthernet1/0/23
 switchport access vlan 138
 switchport mode access
To configure the FortiGate-800 unit

1 Configure the internal and external interfaces.

```bash
config system interface
edit internal
set vdom root
set ip 10.31.130.1 255.255.255.0
set allowaccess ping https
set type physical
next
edit external
set vdom root
set ip 10.31.138.253 255.255.255.0
set allowaccess ping
set type physical
end
end
```

2 Add a firewall address for the RP.

```bash
config firewall address
edit RP
set subnet 169.254.100.1/32
end
```

3 Add standard security policies to allow traffic to reach the RP.

```bash
config firewall policy
edit 1
set srcintf internal
set dstintf external
set srcaddr all
```

```bash
! 
interface FastEthernet1/0/24
  switchport access vlan 182
  switchport mode access
!
interface Vlan138
  ip address 10.31.138.250 255.255.255.0
  ip pim sparse-mode
  ip mroute-cache distributed
!
interface Vlan182
  ip address 169.254.82.1 255.255.255.0
  ip pim sparse-mode
  ip mroute-cache distributed
!
ip classless
ip route 0.0.0.0 0.0.0.0 10.31.138.253
ip route 169.254.100.1 255.255.255.255 169.254.82.250
ip http server
ip pim rp-address 169.254.100.1 Source-RP
!
!
ip access-list standard Source-RP
permit 233.254.200.0 0.0.0.255
```
Multicast routing examples

Multicast forwarding

set dstaddr RP
set action accept
set schedule always
set service ANY
next
edit 2
set srcintf external
set dstintf internal
set srcaddr RP
set dstaddr all
set action accept
set schedule always
set service ANY
end

4 Add the multicast security policy.
config firewall multicast-policy
edit 1
set dstaddr 233.254.200.0 255.255.255.0
set dstintf internal
set srcaddr 169.254.82.0 255.255.255.0
set srcintf external
end

5 Add an access list.
config router access-list
edit Source-RP
config rule
edit 1
set prefix 233.254.200.0 255.255.255.0
set exact-match disable
next
end

6 Add some static routes.
config router static
edit 1
set device internal
set gateway 10.31.130.250
next
edit 2
set device external
set dst 169.254.0.0 255.255.0.0
set gateway 10.31.138.250
next

7 Configure multicast routing.
config router multicast
config interface
edit internal
set pim-mode sparse-mode
config igmp
set version 2
end
next
edit external
Multicast forwarding

set pim-mode sparse-mode
config igmp
set version 2
end
next
end
set multicast-routing enable
config pim-sm-global
config rp-address
edit 1
set ip-address 169.254.100.1
set group Source-RP
next

Cisco_3750_3 router configuration

version 12.2
!
hostname Cisco-3750-3
!
switch 1 provision ws-c3750-24ts
ip subnet-zero
ip routing
!
ip multicast-routing distributed
!
spanning-tree mode pvst
no spanning-tree optimize bpdu transmission
spanning-tree extend system-id
!
interface FastEthernet1/0/23
 switchport access vlan 128
 switchport mode access
!
interface FastEthernet1/0/24
 switchport access vlan 130
 switchport mode access
!
interface Vlan128
 ip address 10.31.128.130 255.255.255.252
 ip pim sparse-mode
 ip mroute-cache distributed
!
interface Vlan130
 ip address 10.31.130.250 255.255.255.0
 ip pim sparse-mode
 ip mroute-cache distributed
!
ip classless
ip route 0.0.0.0 0.0.0.0 10.31.130.1
ip http server
ip pim rp-address 169.254.100.1 Source-RP
!
FortiGate PIM-SM debugging examples

Using the example topology shown in Figure 15 you can trace the multicast streams and states within the three FortiGate units (FGT-1, FGT-2, and FGT-3) using the debug commands described in this section. The command output in this section is taken from FortiGate unit when the multicast stream is flowing correctly from source to receiver.

Figure 15: PIM-SM debugging topology

![PIM-SM debugging topology diagram]

Checking that the receiver has joined the required group

From the last hop router, FGT-3, you can use the following command to check that the receiver has correctly joined the required group.

```
FGT-3 # get router info multicast igmp groups
IGMP Connected Group Membership
Group Address Interface Uptime Expires Last Reporter
239.255.255.1 port3 00:31:15 00:04:02
10.167.0.62
```

Only 1 receiver is displayed for a particular group, this is the device that responded to the IGMP query request from the FGT-3. If a receiver is active the expire time should drop to approximately 2 minutes before being refreshed.

Checking the PIM-SM neighbors

Next the PIM-SM neighbors should be checked. A PIM router becomes a neighbor when the PIM router receives a PIM hello. Use the following command to display the PIM-SM neighbors of FGT-3.

```
ip access-list standard Source-RP
permit 233.254.200.0 0.0.0.255
```
Checking that the PIM router can reach the RP

The rendezvous point (RP) must be reachable for the PIM router (FGT-3) to be able to send the *,G join to request the stream. This can be checked for FGT-3 using the following command:

```plaintext
FGT-3 # get router info multicast pim sparse-mode neighbour
Neighbor    Interface    Uptime/Expires    Ver    DR
Address Priority/Mode
10.132.0.156 port2       01:57:12/00:01:33 v2    1 /
```

Viewing the multicast routing table (FGT-3)

The FGT-3 unicast routing table can be used to determine the path taken to reach the RP at 192.168.1.1. You can then check the stream state entries using the following commands:

```plaintext
FGT-3 # get router info multicast pim sparse-mode table
IP Multicast Routing Table

(*,*,RP) Entries: 0
(*,G) Entries: 1
(S,G) Entries: 1
(S,G,rpt) Entries: 1
FCR Entries: 0
```

<table>
<thead>
<tr>
<th>Entries</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(,,RP) Entries</td>
<td>This state may be reached by general joins for all groups served by a specified RP.</td>
</tr>
<tr>
<td>(*,G) Entries</td>
<td>State that maintains the RP tree for a given group.</td>
</tr>
<tr>
<td>(S,G) Entries</td>
<td>State that maintains a source-specific tree for source S and group G.</td>
</tr>
<tr>
<td>(S,G,rpt) Entries</td>
<td>State that maintains source-specific information about source s on the RP tree for G. For example, if a source is being received on the source-specific tree, it will normally have been pruned off the RP tree.</td>
</tr>
<tr>
<td>FCR</td>
<td>The FCR state entries are for tracking the sources in the <*, G> when <S, G> is not available for any reason, the stream would typically be flowing when this state exists.</td>
</tr>
</tbody>
</table>

Breaking down each entry in detail:

```plaintext
(*, 239.255.255.1)
RP: 192.168.1.1
RPF nbr: 10.132.0.156
RPF idx: port2
Upstream State: JOINED
Local:
    port3
Joined:
    Asserted:
    FCR:
```
The RP will always be listed in a *, G entry, the RPF neighbor and interface index will also be shown. In this topology these are the same in all downstream PIM routers. The state is active so the upstream state is joined.

In this case FGT-3 is the last hop router so the IGMP join is received locally on port3. There is no PIM outgoing interface listed for this entry as it is used for the upstream PIM join.

(10.166.0.11, 239.255.255.1)
RPF nbr: 10.132.0.156
RPF idx: port2
SPT bit: 1
Upstream State: JOINED
Local:
Joined:
Asserted:
Outgoing:
port3

This is the entry for the SPT, no RP IS listed. The S, G stream will be forwarded out of the stated outgoing interface.

(10.166.0.11, 239.255.255.1, rpt)
RP: 192.168.1.1
RPF nbr: 10.132.0.156
RPF idx: port2
Upstream State: NOT PRUNED
Local:
Pruned:
Outgoing:

The above S, G, RPT state is created for all streams that have both a S, G and a *, G entry on the router. This is not pruned in this case because of the topology, the RP and source are reachable over the same interface.

Although not seen in this scenario, assert states may be seen when multiple PIM routers exist on the same LAN which can lead to more than one upstream router having a valid forwarding state. Assert messages are used to elect a single forwarder from the upstream devices.

Viewing the PIM next-hop table

The PIM next-hop table is also very useful for checking the various states, it can be used to quickly identify the states of multiple multicast streams.

```
FGT-3 # get router info multicast pim sparse-mode next-hop
Flags: N = New, R = RP, S = Source, U = Unreachable
Destination Type     Nexthop   Nexthop         Nexthop  Metric Pref Refcnt
           Num   Addr            Ifindex
_________________________________________________________________
10.166.0.11 ..S.  1         10.132.0.156    9 21     110   3
192.168.1.1  .R.  1         10.132.0.156    9 111    110   2
```

Viewing the PIM multicast forwarding table

Also you can check the multicast forwarding table showing the ingress and egress ports of the multicast stream.
FGT-3 # get router info multicast table

IP Multicast Routing Table
Flags: I - Immediate Stat, T - Timed Stat, F - Forwarder installed
Timers: Uptime/Stat Expiry
Interface State: Interface (TTL threshold)

(10.166.0.11, 239.255.255.1), uptime 04:02:55, stat expires 00:02:25
Owner PIM-SM, Flags: TF
Incoming interface: port2
Outgoing interface list:
 port3 (TTL threshold 1)

Viewing the kernel forwarding table
Also the kernel forwarding table can be verified, however this should give similar information to the above command:

FGT-3 # diag ip multicast mroute
grp=239.255.255.1 src=10.166.0.11 intf=9 flags=(0x10000000)[]
status=resolved
 last_assert=2615136 bytes=1192116 pkt=14538 wrong_if=0
 num_ifs=1
 index(ttl)=[6(1),]

Viewing the multicast routing table (FGT-2)
If you check the output on FGT-2 there are some small differences:

FGT-2 # get router info multicast pim sparse-mode table
IP Multicast Routing Table

(*,*,RP) Entries: 0
(*,G) Entries: 1
(S,G) Entries: 1
(S,G,rpt) Entries: 1
FCR Entries: 0

(*, 239.255.255.1)
RP: 192.168.1.1
RPF nbr: 0.0.0.0
RPF idx: None
Upstream State: JOINED
Local:
 Joined:
 external
 Asserted:
 FCR:

The *,G entry now has a joined interface rather than local because it has received a PIM join from FGT-3 rather than a local IGMP join.

(10.166.0.11, 239.255.255.1)
RPF nbr: 10.130.0.237
RPF idx: internal
SPT bit: 1
Upstream State: JOINED
Local:
Joined:
 external
Asserted:
Outgoing:
 external

The S,G entry shows that we have received a join on the external interface and the stream is being forwarded out of this interface.

 (10.166.0.11, 239.255.255.1, rpt)
 RP: 192.168.1.1
 RPF nbr: 0.0.0.0
 RPF idx: None
 Upstream State: PRUNED
 Local:
 Pruned:
 Outgoing:
 External

The S,G,RPT is different from FGT-3 because FGT-2 is the RP, it has pruned back the SPT for the RP to the first hop router.

Viewing the multicast routing table (FGT-1)

FGT-1 again has some differences with regard to the PIM-SM states, there is no *,G entry because it is not in the path of a receiver and the RP.

 FGT-1_master # get router info multicast pim sparse-mode table
 IP Multicast Routing Table

 (*, *, RP) Entries: 0
 (*, G) Entries: 0
 (S, G) Entries: 1
 (S, G, rpt) Entries: 1
 FCR Entries: 0

Below the S,G is the SPT termination because this FortiGate unit is the first hop router, the RPF neighbor always shows as 0.0.0.0 because the source is local to this device. Both the joined and outgoing fields show as external because the PIM join and the stream is egressing on this interface.

 (10.166.0.11, 239.255.255.1)
 RPF nbr: 0.0.0.0
 RPF idx: None
 SPT bit: 1
 Upstream State: JOINED
 Local:
 Joined:
 external
 Asserted:
 Outgoing:
 external

The stream has been pruned back from the RP because the end-to-end SPT is flowing, there is no requirement for the stream to be sent to the RP in this case.

 (10.166.0.11, 239.255.255.1, rpt)
 RP: 0.0.0.0
 RPF nbr: 10.130.0.156
Example multicast destination NAT (DNAT) configuration

The example topology shown in Figure 16 and described below shows how to configure destination NAT (DNAT) for two multicast streams. Both of these streams originate from the same source IP address, which is 10.166.0.11. The example configuration keeps the streams separate by creating 2 multicast NAT policies.

In this example the FortiGate units in Figure 16 have the following roles:
- FGT-1 is the RP for dirty networks, 233.0.0.0/8.
- FGT-2 performs all firewall and DNAT translations.
- FGT-3 is the RP for the clean networks, 239.254.0.0/16.
- FGT-1 and FGT-3 are functioning as PM enabled routers and could be replaced can be any PIM enabled router.

This example only describes the configuration of FGT-2.

FGT-2 performs NAT so that the receivers connected to FGT-3 receive the following translated multicast streams.
- If the multicast source sends multicast packets with a source and destination IP of 10.166.0.11 and 233.2.2.1; FGT-3 translates the source and destination IPs to 192.168.20.1 and 239.254.1.1
- If the multicast source sends multicast packets with a source and destination IP of 10.166.0.11 and 233.3.3.1; FGT-3 translates the source and destination IPs to 192.168.20.10 and 239.254.3.1

Figure 16: Example multicast DNAT topology
To configure FGT-2 for DNAT multicast

1. Add a loopback interface. In the example, the loopback interface is named `loopback`.
   ```
   config system interface
   edit loopback
   set vdom root
   set ip 192.168.20.1 255.255.255.0
   set type loopback
   next
   end
   ```

2. Add PIM and add a unicast routing protocol to the loopback interface as if it was a normal routed interface. Also add static joins to the loopback interface for any groups to be translated.
   ```
   config router multicast
   config interface
   edit loopback
   set pim-mode sparse-mode
   config join-group
   edit 233.2.2.1
   next
   edit 233.3.3.1
   next
   end
   next
   ```

3. In this example, to add firewall multicast policies, different source IP addresses are required so you must first add an IP pool:
   ```
   config firewall ippool
   edit Multicast_source
   set endip 192.168.20.20
   set interface port6
   set startip 192.168.20.10
   next
   end
   ```

4. Add the translation security policies.
 Policy 2, which is the source NAT policy, uses the actual IP address of port6. Policy 1, the DNAT policy, uses an address from the IP pool.
   ```
   config firewall multicast-policy
   edit 1
   set dnat 239.254.3.1
   set dstaddr 233.3.3.1 255.255.255.255
   set dstintf loopback
   set nat 192.168.20.10
   set srcaddr 10.166.0.11 255.255.255.255
   set srcintf port6
   next
   ```
edit 2
 set dnat 239.254.1.1
 set dstaddr 233.2.2.1 255.255.255.255
 set dstintf loopback
 set nat 192.168.20.1
 set srcaddr 10.166.0.11 255.255.255.255
 set srcintf port6
next

5 Add a firewall multicast policy to forward the stream from the loopback interface to the physical outbound interface.

This example is an any/any policy that makes sure traffic accepted by the other multicast policies can exit the FortiGate unit.

config firewall multicast-policy
 edit 3
 set dstintf port7
 set srcintf loopback
next

Example PIM configuration that uses BSR to find the RP

This example shows how to configure a multicast routing network for a network consisting of four FortiGate-500A units (FortiGate-500A_1 to FortiGate-550A_4, see Figure 17). A multicast sender is connected to FortiGate-500A_2. FortiGate-500A_2 forwards multicast packets in two directions to reach Receiver 1 and Receiver 2.

The configuration uses a Boot Start Router (BSR) to find the Rendezvous Points (RPs) instead of using static RPs. Under interface configuration, the loopback interface lo0 must join the 236.1.1.1 group (source).

This example describes:
- Commands used in this example
- Configuration steps
- Example debug commands
Figure 17: PIM network topology using BSR to find the RP

Commands used in this example

This example uses CLI commands for the following configuration settings:

- Adding a loopback interface (lo0)
- Defining the multicast routing
- Adding the NAT multicast policy

Adding a loopback interface (lo0)

Where required, the following command is used to define a loopback interface named lo0.

```
config system interface
edit lo0
    set vdom root
    set ip 1.4.50.4 255.255.255.255
    set allowaccess ping https ssh snmp http telnet
    set type loopback
next
end
```

Defining the multicast routing

In this example, the following command syntax is used to define multicast routing. The example uses a Boot Start Router (BSR) to find the Rendezvous Points (RPs) instead of using static RPs. Under interface configuration, the loopback interface lo0 must join the 236.1.1.1 group (source).
config router multicast
config interface
 edit port6
 set pim-mode sparse-mode
 next
 edit port1
 set pim-mode sparse-mode
 next
 edit lo0
 set pim-mode sparse-mode
 config join-group
 edit 236.1.1.1
 next
 end
 set rp-candidate enable
 set rp-candidate-priority 1
 next
 end
set multicast-routing enable
config pim-sm-global
 set bsr-allow-quick-refresh enable
 set bsr-candidate enable
 set bsr-interface lo0
 set bsr-priority 200
end

Adding the NAT multicast policy

In this example, the incoming multicast policy does the address translation. The NAT address should be the same as the IP address of the of loopback interface. The DNAT address is the translated address, which should be a new group.

config firewall multicast-policy
 edit 1
 set dstintf port6
 set srcintf lo0
 next
 edit 2
 set dnat 238.1.1.1
 set dstintf lo0
 set nat 1.4.50.4
 set srcintf port1
 next

Configuration steps

In this sample, FortiGate-500A_1 is the RP for the group 228.1.1.1, 237.1.1.1, 238.1.1.1, and FortiGate-500A_4 is the RP for the other group which has a priority of1. OSPF is used in this example to distribute routes including the loopback interface. All firewalls have full mesh security policies to allow any to any.
• In the FortiGate-500A_1 configuration, the NAT policy translates source address 236.1.1.1 to 237.1.1.1
• In the FortiGate-500A_4, configuration, the NAT policy translates source 236.1.1.1 to 238.1.1.1
• Source 236.1.1.1 is injected into network as well.

The following procedures include the CLI commands for configuring each of the FortiGate units in the example configuration.

To configure FortiGate-500A_1

1 Configure multicast routing.
   ```
   config router multicast
   config interface
   edit port5
     set pim-mode sparse-mode
   next
   edit port4
     set pim-mode sparse-mode
   next
   edit lan
     set pim-mode sparse-mode
   next
   edit port1
     set pim-mode sparse-mode
   next
   edit lo999
     set pim-mode sparse-mode
   next
   edit lo0
     set pim-mode sparse-mode
     set rp-candidate enable
     set rp-candidate-group 1
   next
   end
   set multicast-routing enable
   config pim-sm-global
     set bsr-candidate enable
     set bsr-interface lo0
   end
   ```

2 Add multicast security policies.
   ```
   config firewall multicast-policy
   edit 1
     set dstintf port5
     set srcintf port4
   next
   edit 2
     set dstintf port4
     set srcintf port5
   next
   edit 3
   next
   end
   ```
3 Add router access lists.

```config router access-list
  edit 1
    config rule
      edit 1
        set prefix 228.1.1.1 255.255.255.255
        set exact-match enable
        next
      edit 2
        set prefix 237.1.1.1 255.255.255.255
        set exact-match enable
        next
      edit 3
        set prefix 238.1.1.1 255.255.255.255
        set exact-match enable
        next
    end
next
end
```

To configure FortiGate-500A_2

1 Configure multicast routing.

```config router multicast
  config interface
    edit "lan"
      set pim-mode sparse-mode
    next
    edit "port5"
      set pim-mode sparse-mode
    next
    edit "port2"
      set pim-mode sparse-mode
    next
    edit "port4"
      set pim-mode sparse-mode
    next
    edit "lo_5"
      set pim-mode sparse-mode
      config join-group
        edit 236.1.1.1
        next
    end
  set multicast-routing enable
end
```

2 Add multicast security policies.

```config firewall multicast-policy
  edit 1
    set dstintf lan
    set srcintf port5
    next
```
edit 2
 set dstintf port5
 set srcintf lan
next
edit 4
 set dstintf lan
 set srcintf port2
next
edit 5
 set dstintf port2
 set srcintf lan
next
edit 7
 set dstintf port1
 set srcintf port2
next
edit 8
 set dstintf port2
 set srcintf port1
next
edit 9
 set dstintf port5
 set srcintf port2
next
edit 10
 set dstintf port2
 set srcintf port5
next
edit 11
 set dnat 237.1.1.1
 set dstintf lo_5
 set nat 5.5.5.5
 set srcintf port2
next
edit 12
 set dstintf lan
 set srcintf lo_5
next
edit 13
 set dstintf port1
 set srcintf lo_5
next
edit 14
 set dstintf port5
 set srcintf lo_5
next
edit 15
 set dstintf port2
 set srcintf lo_5
next
edit 16
next
end
To configure FortiGate-500A_3

1. Configure multicast routing.

   ```fortigate-config
   config router multicast
   config interface
   edit port5
       set pim-mode sparse-mode
   next
   edit port6
       set pim-mode sparse-mode
   next
   edit lo0
       set pim-mode sparse-mode
       set rp-candidate enable
       set rp-candidate-priority 255
   next
   edit lan
       set pim-mode sparse-mode
   next
   end
   set multicast-routing enable
   config pim-sm-global
       set bsr-candidate enable
       set bsr-interface lo0
   end
   end
   ``

2. Add multicast security policies.

   ```fortigate-config
 config firewall multicast-policy
 edit 1
 set dstintf port5
 set srcintf port6
 next
 edit 2
 set dstintf port6
 set srcintf port5
 next
 edit 3
 set dstintf port6
 set srcintf lan
 next
 edit 4
 set dstintf lan
 set srcintf port6
 next
 edit 5
 set dstintf port5
 set srcintf lan
 next
 edit 6
 set dstintf lan
 set srcintf port5
 next
 end
   ```
To configure FortiGate-500A_4

1 Configure multicast routing.

```
config router multicast
config interface
edit port6
 set pim-mode sparse-mode
next
edit lan
 set pim-mode sparse-mode
next
edit port1
 set pim-mode sparse-mode
next
edit lo0
 set pim-mode sparse-mode
set rp-candidate enable
config join-group
 edit 236.1.1.1
 next
end
set rp-candidate-priority 1
next
end
set multicast-routing enable
config pim-sm-global
 set bsr-allow-quick-refresh enable
 set bsr-candidate enable
 set bsr-interface lo0
 set bsr-priority 1
end
end
```

2 Add multicast security policies.

```
config firewall policy
edit 1
 set srcintf lan
 set dstintf port6
 set srcaddr all
 set dstaddr all
 set action accept
 set schedule always
 set service ANY
next
edit 2
 set srcintf port6
 set dstintf lan
 set srcaddr all
 set dstaddr all
 set action accept
 set schedule always
 set service ANY
next
```
edit 3
  set srcintf port1
  set dstintf port6
  set srcaddr all
  set dstaddr all
  set action accept
  set schedule always
  set service ANY
next
edit 4
  set srcintf port6
  set dstintf port1
  set srcaddr all
  set dstaddr all
  set action accept
  set schedule always
  set service ANY
next
edit 5
  set srcintf port1
  set dstintf lan
  set srcaddr all
  set dstaddr all
  set action accept
  set schedule always
  set service ANY
next
edit 6
  set srcintf lan
  set dstintf port1
  set srcaddr all
  set dstaddr all
  set action accept
  set schedule always
  set service ANY
next
edit 7
  set srcintf port1
  set dstintf port1
  set srcaddr all
  set dstaddr all
  set action accept
  set schedule always
  set service ANY
next
edit 8
  set srcintf port6
  set dstintf lo0
  set srcaddr all
  set dstaddr all
  set action accept
  set schedule always
  set service ANY
next
Example debug commands

You can use the following CLI commands to view information about and status of the multicast configuration. This section includes `get` and `diagnose` commands and some sample output.

```plaintext
get router info multicast pim sparse-mode table 236.1.1.1
get router info multicast pim sparse-mode neighbour
 Neighbor Interface Uptime/Expires Ver DR
 Address Priority/
 Mode
83.97.1.2 port6 02:22:01/00:01:44 v2 1 / DR

diagnose ip multicast mroute
grp=236.1.1.1 src=19.2.1.1 intf=7 flags=(0x10000000)[]
status=resolved
 last_assert=171963 bytes=1766104 pkt=1718 wrong_if=1
num_ifs=2
 index(ttl)=[6(1),10(1),] grp=236.1.1.1 src=1.4.50.4 intf=10 flags=(0x10000000)[]
status=resolved
 last_assert=834864 bytes=4416 pkt=138 wrong_if=0 num_ifs=2
 index(ttl)=7(1),6(1),] grp=238.1.1.1 src=1.4.50.4 intf=10 flags=(0x10000000)[]
status=resolved
 last_assert=834864 bytes=1765076 pkt=1717 wrong_if=0
num_ifs=1
 index(ttl)=7(1),]

get router info multicast igmp groups
 IGMP Connected Group Membership
 Group Address Interface Uptime Expires Last
 Reporter
```

```plaintext
edit 9
 set srcintf port1
 set dstintf lo0
 set srcaddr all
 set dstaddr all
 set action accept
 set schedule always
 set service ANY
next
edit 10
 set srcintf lan
 set dstintf lo0
 set srcaddr all
 set dstaddr all
 set action accept
 set schedule always
 set service ANY
next
end
```
Multicast forwarding

236.1.1.1 lan 00:45:48 00:03:21 10.4.1.1
236.1.1.1 lo0 02:19:31 00:03:23 1.4.50.4

get router info multicast pim sparse-mode interface
Address Interface VIFindex Ver/ Mode Count Prior
10.4.1.2 lan 2 v2/S 0 1 10.4.1.2
83.97.1.1 port6 0 v2/S 1 1 83.97.1.2
1.4.50.4 lo0 3 v2/S 0 1 1.4.50.4

get router info multicast pim sparse-mode rp-mapping
PIM Group-to-RP Mappings
This system is the Bootstrap Router (v2)
Group(s): 224.0.0.0/4
  RP: 1.4.50.4
    Info source: 1.4.50.4, via bootstrap, priority 1
    Uptime: 02:20:32, expires: 00:01:58
  RP: 1.4.50.3
    Info source: 1.4.50.3, via bootstrap, priority 255
    Uptime: 02:20:07, expires: 00:02:24
Group(s): 228.1.1.1/32
  RP: 1.4.50.1
    Info source: 1.4.50.1, via bootstrap, priority 192
    Uptime: 02:18:24, expires: 00:02:06
Group(s): 237.1.1.1/32
  RP: 1.4.50.1
    Info source: 1.4.50.1, via bootstrap, priority 192
    Uptime: 02:18:24, expires: 00:02:06
Group(s): 238.1.1.1/32
  RP: 1.4.50.1
    Info source: 1.4.50.1, via bootstrap, priority 192
    Uptime: 02:18:24, expires: 00:02:06

get router info multicast pim sparse-mode bsr-info
PIMv2 Bootstrap information
This system is the Bootstrap Router (BSR)
BSR address: 1.4.50.4
Uptime: 02:23:08, BSR Priority: 1, Hash mask length: 10
Next bootstrap message in 00:00:18
Role: Candidate BSR
State: Elected BSR

Candidate RP: 1.4.50.4(lo0)
  Advertisement interval 60 seconds
  Next Cand_RP_advertisement in 00:00:54
Virtual LANs

Virtual Local Area Networks (VLANs) multiply the capabilities of your FortiGate unit, and can also provide added network security. Virtual LANs (VLANs) use ID tags to logically separate devices on a network into smaller broadcast domains. These smaller domains forward packets only to devices that are part of that VLAN domain. This reduces traffic and increases network security.

A Local Area Network (LAN) is a group of connected computers and devices that are arranged into network broadcast domains. A LAN broadcast domain includes all the computers that receive a packet broadcast from any computer in that broadcast domain. A switch will automatically forward the packets to all of its ports; in contrast, routers do not automatically forward network broadcast packets. This means routers separate broadcast domains. If a network has only switches and no routers, that network is considered one broadcast domain, no matter how large or small it is. Smaller broadcast domains are more efficient because fewer devices receive unnecessary packets. They are more secure as well because a hacker reading traffic on the network will have access to only a small portion of the network instead of the entire network’s traffic.

Virtual LANs (VLANs) use ID tags to logically separate a LAN into smaller broadcast domains. Each VLAN is its own broadcast domain. Smaller broadcast domains reduce traffic and increase network security. The IEEE 802.1Q standard defines VLANs. All layer-2 and layer-3 devices along a route must be 802.1Q-compliant to support VLANs along that route. For more information, see “VLAN switching and routing” on page 206 and “VLAN layer-3 routing” on page 209.

VLANs reduce the size of the broadcast domains by only forwarding packets to interfaces that are part of that VLAN or part of a VLAN trunk link. Trunk links form switch-to-switch or switch-to-router connections, and forward traffic for all VLANs. This enables a VLAN to include devices that are part of the same broadcast domain, but physically distant from each other.

VLAN ID tags consist of a 4-byte frame extension that switches and routers apply to every packet sent and received in the VLAN. Workstations and desktop computers, which are commonly originators or destinations of network traffic, are not an active part of the VLAN process. All the VLAN tagging and tag removal is done after the packet has left the computer. For more information, see “VLAN ID rules” on page 206.

Any FortiGate unit without VDOMs enabled can have a maximum of 255 interfaces in transparent operating mode. The same is true for any single VDOM. In NAT mode, the number can range from 255 to 8192 interfaces per VDOM, depending on the FortiGate model. These numbers include VLANs, other virtual interfaces, and physical interfaces. To have more than 255 interfaces configured in transparent operating mode, you need to configure multiple VDOMs that enable you to divide the total number of interfaces over all the VDOMs.

One example of an application of VLANs is a company’s accounting department. Accounting computers may be located at both main and branch offices. However, accounting computers need to communicate with each other frequently and require increased security. VLANs allow the accounting network traffic to be sent only to accounting computers and to connect accounting computers in different locations as if they were on the same physical subnet.
VLAN ID rules

Layer-2 switches and layer-3 devices add VLAN ID tags to the traffic as it arrives and remove them before they deliver the traffic to its final destination. Devices such as PCs and servers on the network do not require any special configuration for VLANs. Twelve bits of the 4-byte VLAN tag are reserved for the VLAN ID number. Valid VLAN ID numbers are from 1 to 4094, while 0 is used for high priority frames, and 4095 is reserved.

On a layer-2 switch, you can have only one VLAN subinterface per physical interface, unless that interface is configured as a trunk link. Trunk links can transport traffic for multiple VLANs to other parts of the network.

On a FortiGate unit, you can add multiple VLANs to the same physical interface. However, VLAN subinterfaces added to the same physical interface cannot have the same VLAN ID or have IP addresses on the same subnet. You can add VLAN subinterfaces with the same VLAN ID to different physical interfaces.

Creating VLAN subinterfaces with the same VLAN ID does not create any internal connection between them. For example a VLAN ID of 300 on port1 and VLAN ID of 300 on port2 are allowed, but they are not connected. Their relationship is the same as between any two FortiGate network interfaces.

VLAN switching and routing

VLAN switching takes place on the OSI model layer-2, just like other network switching. VLAN routing takes place on the OSI model layer-3. The difference between them is that during VLAN switching, VLAN packets are simply forwarded to their destination. This is different from VLAN routing where devices can open the VLAN packets and change their VLAN ID tags to route the packets to a new destination.

VLAN layer-2 switching

Ethernet switches are layer-2 devices, and generally are 802.1Q compliant. Layer 2 refers to the second layer of the seven layer Open Systems Interconnect (OSI) basic networking model; the Data Link layer. FortiGate units act as layer-2 switches or bridges when they are in transparent mode. The units simply tag and forward the VLAN traffic or receive and remove the tags from the packets. A layer-2 device does not inspect incoming packets or change their contents; it only adds or removes tags and routes the packet.

A VLAN can have any number of physical interfaces assigned to it. Multiple VLANs can be assigned to the same physical interface. Typically two or more physical interfaces are assigned to a VLAN, one for incoming and one for outgoing traffic. Multiple VLANs can be configured on one FortiGate unit, including trunk links.

Layer-2 VLAN example

To better understand VLAN operation, this example shows what happens to a data frame on a network that uses VLANs.
The network topology consists of two 8-port switches that are configured to support VLANs on a network. Both switches are connected through port 8 using an 802.1Q trunk link. Subnet 1 is connected to switch A, and subnet 2 is connected to switch B. The ports on the switches are configured as follows.

Table 18: How ports and VLANs are used on Switch A and B

<table>
<thead>
<tr>
<th>Switch</th>
<th>Ports</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 - 4</td>
<td>100</td>
</tr>
<tr>
<td>A</td>
<td>5 - 7</td>
<td>200</td>
</tr>
<tr>
<td>A &amp; B</td>
<td>8</td>
<td>Trunk link</td>
</tr>
<tr>
<td>B</td>
<td>4 - 5</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>200</td>
</tr>
</tbody>
</table>

In this example, switch A is connected to the Branch Office and switch B to the Main Office.

1. A computer on port 1 of switch A sends a data frame over the network.

2. Switch A tags the data frame with a VLAN 100 ID tag upon arrival because port 1 is part of VLAN 100.

3. Switch A forwards the tagged data frame to the other VLAN 100 ports — ports 2 through 4. Switch A also forwards the data frame to the 802.1Q trunk link (port 8) so other parts of the network that may contain VLAN 100 groups will receive VLAN 100 traffic.

This data frame is not forwarded to the other ports on switch A because they are not part of VLAN 100. This increases security and decreases network traffic.
4 Switch B receives the data frame over the trunk link (port 8).

5 Because there are VLAN 100 ports on switch B (ports 4 and 5), the data frame is forwarded to those ports. As with switch A, the data frame is not delivered to VLAN 200.

If there were no VLAN 100 ports on switch B, the switch would not forward the data frame and it would stop there.

6 The switch removes the VLAN 100 ID tag before it forwards the data frame to an end destination.
The sending and receiving computers are not aware of any VLAN tagging on the data frames that are being transmitted. When any computer receives that data frame, it appears as a normal data frame.

**VLAN layer-3 routing**

Routers are layer-3 devices. Layer 3 refers to the third layer of the OSI networking model, the Network layer. FortiGate units in NAT mode act as layer-3 devices. As with layer 2, FortiGate units acting as layer-3 devices are 802.1Q-compliant.

The main difference between layer-2 and layer-3 devices is how they process VLAN tags. Layer-2 switches just add, read and remove the tags. They do not alter the tags or do any other high-level actions. Layer-3 routers not only add, read and remove tags but also analyze the data frame and its contents. This analysis allows layer-3 routers to change the VLAN tag if it is appropriate and send the data frame out on a different VLAN.

In a layer-3 environment, the 802.1Q-compliant router receives the data frame and assigns a VLAN ID. The router then forwards the data frame to other members of the same VLAN broadcast domain. The broadcast domain can include local ports, layer-2 devices and layer-3 devices such as routers and firewalls. When a layer-3 device receives the data frame, the device removes the VLAN tag and examines its contents to decide what to do with the data frame. The layer-3 device considers:

- source and destination addresses
- protocol
- port number.

The data frame may be forwarded to another VLAN, sent to a regular non-VLAN-tagged network or just forwarded to the same VLAN as a layer-2 switch would do. Or, the data frame may be discarded if the proper security policy has been configured to do so.

**Layer-3 VLAN example**

In this example, switch A is connected to the Branch Office subnet, the same as subnet 1 in the layer-2 example. In the Main Office subnet, VLAN 300 is on port 5 of switch B. The FortiGate unit is connected to switch B on port 1 and the trunk link connects the FortiGate unit’s port 3 to switch A. The other ports on switch B are unassigned.

This example explains how traffic can change VLANs originating on VLAN 100 and arriving at a destination on VLAN 300. Layer-2 switches alone cannot accomplish this, but a layer-3 router can.

1. The VLAN 100 computer at the Branch Office sends the data frame to switch A, where the VLAN 100 tag is added.
2 Switch A forwards the tagged data frame to the FortiGate unit over the 802.1Q trunk link, and to the VLAN 100 interfaces on Switch A.

Up to this point everything is the same as in the layer-2 example.
3 The FortiGate unit removes the VLAN 100 tag, and inspects the content of the data frame. The FortiGate unit uses the content to select the correct security policy and routing options.

4 The FortiGate unit’s security policy allows the data frame to go to VLAN 300 in this example. The data frame will be sent to all VLAN 300 interfaces, but in the example there is only port 1 on the FortiGate unit. Before the data frame leaves, the FortiGate unit adds the VLAN ID 300 tag to the data frame. This is the step that layer 2 cannot do. Only layer 3 can retag a data frame as a different VLAN.

5 Switch B receives the data frame, and removes the VLAN ID 300 tag, because this is the last hop, and forwards the data frame to the computer on port 5.
In this example, a data frame arrived at the FortiGate unit tagged as VLAN 100. After checking its content, the FortiGate unit retagged the data frame for VLAN 300. It is this change from VLAN 100 to VLAN 300 that requires a layer-3 routing device, in this case the FortiGate unit. Layer-2 switches cannot perform this change.

**VLANs in NAT mode**

In NAT mode the FortiGate unit functions as a layer-3 device. In this mode, the FortiGate unit controls the flow of packets between VLANs, but can also remove VLAN tags from incoming VLAN packets. The FortiGate unit can also forward untagged packets to other networks, such as the Internet.

In NAT mode, the FortiGate unit supports VLAN trunk links with IEEE 802.1Q-compliant switches, or routers. The trunk link transports VLAN-tagged packets between physical subnets or networks. When you add VLAN sub-interfaces to the FortiGate unit physical interfaces, the VLANs have IDs that match the VLAN IDs of packets on the trunk link. The FortiGate unit directs packets with VLAN IDs to sub-interfaces with matching IDs.

You can define VLAN sub-interfaces on all FortiGate physical interfaces. However, if multiple virtual domains are configured on the FortiGate unit, you will have access to only the physical interfaces on your virtual domain. The FortiGate unit can tag packets leaving on a VLAN subinterface. It can also remove VLAN tags from incoming packets and add a different VLAN tag to outgoing packets.

Normally in VLAN configurations, the FortiGate unit’s internal interface is connected to a VLAN trunk, and the external interface connects to an Internet router that is not configured for VLANs. In this configuration the FortiGate unit can apply different policies for traffic on each VLAN interface connected to the internal interface, which results in less network traffic and better security.
**Adding VLAN subinterfaces**

A VLAN subinterface, also called a VLAN, is a virtual interface on a physical interface. The subinterface allows routing of VLAN tagged packets using that physical interface, but it is separate from any other traffic on the physical interface.

Adding a VLAN subinterface includes configuring:

- Physical interface
- IP address and netmask
- VLAN ID
- VDOM

**Physical interface**

The term VLAN subinterface correctly implies the VLAN interface is not a complete interface by itself. You add a VLAN subinterface to the physical interface that receives VLAN-tagged packets. The physical interface can belong to a different VDOM than the VLAN, but it must be connected to a network router that is configured for this VLAN. Without that router, the VLAN will not be connected to the network, and VLAN traffic will not be able to access this interface. The traffic on the VLAN is separate from any other traffic on the physical interface.

When you are working with interfaces on your FortiGate unit, use the Column Settings on the Interface display to make sure the information you need is displayed. When working with VLANs, it is useful to position the **VLAN ID** column close to the IP address. If you are working with VDOMs, including the **Virtual Domain** column as well will help you troubleshoot problems more quickly.

To view the Interface display, go to System > Network > Interface.

**IP address and netmask**

FortiGate unit interfaces cannot have overlapping IP addresses. The IP addresses of all interfaces must be on different subnets. This rule applies to both physical interfaces and to virtual interfaces such as VLAN subinterfaces. Each VLAN subinterface must be configured with its own IP address and netmask pair. This rule helps prevent a broadcast storm or other similar network problems.

If you are unable to change your existing configurations to prevent IP overlap, enter the CLI command `config system global` and `set ip-overlap enable` to allow IP address overlap. If you enter this command, multiple VLAN interfaces can have an IP address that is part of a subnet used by another interface. This command is recommended for advanced users only.

**VLAN ID**

The VLAN ID is part of the VLAN tag added to the packets by VLAN switches and routers. The VLAN ID is a number between 1 and 4094 that allow groups of IP addresses with the same VLAN ID to be associated together. VLAN ID 0 is used only for high priority frames, and 4095 is reserved.
All devices along a route must support the VLAN ID of the traffic along that route. Otherwise, the traffic will be discarded before reaching its destination. For example, if your computer is part of VLAN_100 and a co-worker on a different floor of your building is also on the same VLAN_100, you can communicate with each other over VLAN_100, only if all the switches and routers support VLANs and are configured to pass along VLAN_100 traffic properly. Otherwise, any traffic you send your co-worker will be blocked or not delivered.

**VDOM**

If VDOMs are enabled, each VLAN subinterface must belong to a VDOM. This rule also applies for physical interfaces.

Interface-related CLI commands require a VDOM to be specified, regardless of whether the FortiGate unit has VDOMs enabled.

VLAN subinterfaces on separate VDOMs cannot communicate directly with each other. In this situation, the VLAN traffic must exit the FortiGate unit and re-enter the unit again, passing through firewalls in both directions. This situation is the same for physical interfaces.

A VLAN subinterface can belong to a different VDOM than the physical interface it is part of. This is because the traffic on the VLAN is handled separately from the other traffic on that interface. This is one of the main strengths of VLANs.

The following procedure will add a VLAN subinterface called VLAN_100 to the FortiGate internal interface with a VLAN ID of 100. It will have an IP address and netmask of 172.100.1.1/255.255.255.0, and allow HTTPS, PING, and TELNET administrative access. Note that in the CLI, you must enter “set type vlan” before setting the vlanid, and that the allowaccess protocols are lower case.

**To add a VLAN subinterface in NAT mode - web-based manager**

1. If Current VDOM appears at the bottom left of the screen, select Global from the list of VDOMs.
2. Go to System > Network > Interface.
3. Select Create New to add a VLAN subinterface.
4. Enter the following:

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>VLAN_100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>VLAN</td>
</tr>
<tr>
<td>Interface</td>
<td>internal</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>100</td>
</tr>
<tr>
<td>Addressing Mode</td>
<td>Manual</td>
</tr>
<tr>
<td>IP/Netmask</td>
<td>172.100.1.1/255.255.255.0</td>
</tr>
<tr>
<td>Administrative Access</td>
<td>HTTPS, PING, TELNET</td>
</tr>
</tbody>
</table>

5. Select OK.
To view the new VLAN subinterface, select the expand arrow next to the parent physical interface (the internal interface). This will expand the display to show all VLAN subinterfaces on this physical interface. If there is no expand arrow displayed, there are no subinterfaces configured on that physical interface.

For each VLAN, the list displays the name of the VLAN, and, depending on column settings, its IP address, the Administrative access you selected for it, the VLAN ID number, and which VDOM it belongs to if VDOMs are enabled.

**To add a VLAN subinterface in NAT mode - CLI**

```plaintext
config system interface
 edit VLAN_100
 set interface internal
 set type vlan
 set vlanid 100
 set ip 172.100.1.1 255.255.255.0
 set allowaccess https ping telnet
 end
```

**Configuring security policies and routing**

Once you have created a VLAN subinterface on the FortiGate unit, you need to configure security policies and routing for that VLAN. Without these, the FortiGate unit will not pass VLAN traffic to its intended destination. Security policies direct traffic through the FortiGate unit between interfaces. Routing directs traffic across the network.

**Configuring security policies**

Security policies permit communication between the FortiGate unit’s network interfaces based on source and destination IP addresses. Interfaces that communicate with the VLAN interface need security policies to permit traffic to pass between them and the VLAN interface.

Each VLAN needs a security policy for each of the following connections the VLAN will be using:

- from this VLAN to an external network
- from an external network to this VLAN
- from this VLAN to another VLAN in the same virtual domain on the FortiGate unit
- from another VLAN to this VLAN in the same virtual domain on the FortiGate unit.

The packets on each VLAN are subject to antivirus scans and other UTM measures as they pass through the FortiGate unit.

**Configuring routing**

As a minimum, you need to configure a default static route to a gateway with access to an external network for outbound packets. In more complex cases, you will have to configure different static or dynamic routes based on packet source and destination addresses.

As with firewalls, you need to configure routes for VLAN traffic. VLANs need routing and a gateway configured to send and receive packets outside their local subnet just as physical interfaces do. The type of routing you configure, static or dynamic, will depend on the routing used by the subnet and interfaces you are connecting to. Dynamic routing can be routing information protocol (RIP), border gateway protocol (BGP), open shortest path first (OSPF), or multicast.
If you enable SSH, PING, TELNET, HTTPS and HTTP on the VLAN, you can use those protocols to troubleshoot your routing and test that it is properly configured. Enabling logging on the interfaces and using CLI diagnose commands such as `diagnose sniff packet <interface_name>` can also help locate any possible configuration or hardware issues.

**Example VLAN configuration in NAT mode**

In this example two different internal VLAN networks share one interface on the FortiGate unit, and share the connection to the Internet. This example shows that two networks can have separate traffic streams while sharing a single interface. This configuration could apply to two departments in a single company, or to different companies.

There are two different internal network VLANs in this example. VLAN_100 is on the 10.1.1.0/255.255.255.0 subnet, and VLAN_200 is on the 10.1.2.0/255.255.255.0 subnet. These VLANs are connected to the VLAN switch, such as a Cisco 2950 Catalyst switch.

The FortiGate internal interface connects to the VLAN switch through an 802.1Q trunk. The internal interface has an IP address of 192.168.110.126 and is configured with two VLAN subinterfaces (VLAN_100 and VLAN_200). The external interface has an IP address of 172.16.21.2 and connects to the Internet. The external interface has no VLAN subinterfaces on it.

*Figure 18: FortiGate unit with VLANs in NAT mode*

When the VLAN switch receives packets from VLAN_100 and VLAN_200, it applies VLAN ID tags and forwards the packets of each VLAN both to local ports and to the FortiGate unit across the trunk link. The FortiGate unit has policies that allow traffic to flow between the VLANs, and from the VLANs to the external network.

This section describes how to configure a FortiGate-800 unit and a Cisco Catalyst 2950 switch for this example network topology. The Cisco configuration commands used in this section are IOS commands.
It is assumed that both the FortiGate-800 and the Cisco 2950 switch are installed and connected and that basic configuration has been completed. On the switch, you will need to be able to access the CLI to enter commands. Refer to the manual for your FortiGate model as well as the manual for the switch you select for more information. It is also assumed that no VDOMs are enabled.

**General configuration steps**

The following steps provide an overview of configuring and testing the hardware used in this example. For best results in this configuration, follow the procedures in the order given. Also, note that if you perform any additional actions between procedures, your configuration may have different results.

1. Configure the FortiGate unit
   - Configure the external interface
   - Add two VLAN subinterfaces to the internal network interface
   - Add firewall addresses and address ranges for the internal and external networks
   - Add security policies to allow:
     - the VLAN networks to access each other
     - the VLAN networks to access the external network.
2. Configure the VLAN switch

**Configure the FortiGate unit**

Configuring the FortiGate unit includes:

- Configure the external interface
- Add VLAN subinterfaces
- Add the firewall addresses
- Add the security policies

**Configure the external interface**

The FortiGate unit’s external interface will provide access to the Internet for all internal networks, including the two VLANs.

**To configure the external interface - web-based manager**

1. Go to System > Network > Interface.
2. Select Edit for the external interface.
3. Enter the following information and select OK:

<table>
<thead>
<tr>
<th>Addressing mode</th>
<th>Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP/Netmask</td>
<td>172.16.21.2/255.255.255.0</td>
</tr>
</tbody>
</table>

**To configure the external interface - CLI**

```bash
config system interface
edit external
 set mode static
 set ip 172.16.21.2 255.255.255.0
end
```
Add VLAN subinterfaces

This step creates the VLANs on the FortiGate unit internal physical interface. The IP address of the internal interface does not matter to us, as long as it does not overlap with the subnets of the VLAN subinterfaces we are configuring on it.

The rest of this example shows how to configure the VLAN behavior on the FortiGate unit, configure the switches to direct VLAN traffic the same as the FortiGate unit, and test that the configuration is correct.

Adding VLAN subinterfaces can be completed through the web-based manager, or the CLI.

To add VLAN subinterfaces - web-based manager
1. Go to System > Network > Interface.
2. Select Create New.
3. Enter the following information and select OK:

<table>
<thead>
<tr>
<th>Name</th>
<th>VLAN_100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>internal</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>100</td>
</tr>
<tr>
<td>Addressing mode</td>
<td>Manual</td>
</tr>
<tr>
<td>IP/Netmask</td>
<td>10.1.1.1/255.255.255.0</td>
</tr>
<tr>
<td>Administrative Access</td>
<td>HTTPS, PING, TELNET</td>
</tr>
</tbody>
</table>

4. Select Create New.
5. Enter the following information and select OK:

<table>
<thead>
<tr>
<th>Name</th>
<th>VLAN_200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>internal</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>200</td>
</tr>
<tr>
<td>Addressing mode</td>
<td>Manual</td>
</tr>
<tr>
<td>IP/Netmask</td>
<td>10.1.2.1/255.255.255.0</td>
</tr>
<tr>
<td>Administrative Access</td>
<td>HTTPS, PING, TELNET</td>
</tr>
</tbody>
</table>

To add VLAN subinterfaces - CLI

```
config system interface
edit VLAN_100
 set vdom root
 set interface internal
 set type vlan
 set vlanid 100
 set mode static
 set ip 10.1.1.1 255.255.255.0
 set allowaccess https ping telnet
next
edit VLAN_200
 set vdom root
```
set interface internal
set type vlan
set vlanid 200
set mode static
set ip 10.1.2.1 255.255.255.0
set allowaccess https ping telnet
end

### Add the firewall addresses

You need to define the addresses of the VLAN subnets for use in security policies. The FortiGate unit provides one default address, “all”, that you can use when a security policy applies to all addresses as a source or destination of a packet. However, using “all” is less secure and should be avoided when possible.

In this example, the “.Net” part of the address name indicates a range of addresses instead of a unique address. When choosing firewall address names, use informative and unique names.

#### To add the firewall addresses - web-based manager

1. Go to Firewall Objects > Address > Address.
2. Select Create New.
3. Enter the following information and select OK:

<table>
<thead>
<tr>
<th>Address Name</th>
<th>VLAN_100_Net</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Subnet / IP Range</td>
</tr>
<tr>
<td>Subnet / IP Range</td>
<td>10.1.1.0/255.255.255.0</td>
</tr>
</tbody>
</table>

4. Select Create New.
5. Enter the following information and select OK:

<table>
<thead>
<tr>
<th>Address Name</th>
<th>VLAN_200_Net</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Subnet / IP Range</td>
</tr>
<tr>
<td>Subnet / IP Range</td>
<td>10.1.2.0/255.255.255.0</td>
</tr>
</tbody>
</table>

#### To add the firewall addresses - CLI

```bash
config firewall address
edit VLAN_100_Net
 set type ipmask
 set subnet 10.1.1.0 255.255.255.0
next
edit VLAN_200_Net
 set type ipmask
 set subnet 10.1.2.0 255.255.255.0
end
```

### Add the security policies

Once you have assigned addresses to the VLANs, you need to configure security policies for them to allow valid packets to pass from one VLAN to another and to the Internet.
If you do not want to allow all services on a VLAN, you can create a security policy for each service you want to allow. This example allows all services.

**To add the security policies - web-based manager**

1. Go to Policy > Policy > Policy.
2. Select Create New.
3. Enter the following information and select OK:

<table>
<thead>
<tr>
<th>Source Interface/Zone</th>
<th>VLAN_100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>VLAN_100_Net</td>
</tr>
<tr>
<td>Destination Interface/Zone</td>
<td>VLAN_200</td>
</tr>
<tr>
<td>Destination Address</td>
<td>VLAN_200_Net</td>
</tr>
<tr>
<td>Schedule</td>
<td>Always</td>
</tr>
<tr>
<td>Service</td>
<td>ANY</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>Enable NAT</td>
<td>Enable</td>
</tr>
</tbody>
</table>

4. Select Create New.
5. Enter the following information and select OK:

<table>
<thead>
<tr>
<th>Source Interface/Zone</th>
<th>VLAN_200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>VLAN_200_Net</td>
</tr>
<tr>
<td>Destination Interface/Zone</td>
<td>VLAN_100</td>
</tr>
<tr>
<td>Destination Address</td>
<td>VLAN_100_Net</td>
</tr>
<tr>
<td>Schedule</td>
<td>Always</td>
</tr>
<tr>
<td>Service</td>
<td>ANY</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>Enable NAT</td>
<td>Enable</td>
</tr>
</tbody>
</table>

7. Enter the following information and select OK:

<table>
<thead>
<tr>
<th>Source Interface/Zone</th>
<th>VLAN_100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>VLAN_100_Net</td>
</tr>
<tr>
<td>Destination Interface/Zone</td>
<td>external</td>
</tr>
<tr>
<td>Destination Address</td>
<td>all</td>
</tr>
<tr>
<td>Schedule</td>
<td>Always</td>
</tr>
</tbody>
</table>
Virtual LANs

Example VLAN configuration in NAT mode

Service	ANY
Action | ACCEPT
Enable NAT | Enable

8 Select Create New.
9 Enter the following information and select OK:

<table>
<thead>
<tr>
<th>Source Interface/Zone</th>
<th>VLAN_200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>VLAN_200_Net</td>
</tr>
<tr>
<td>Destination Interface/Zone</td>
<td>external</td>
</tr>
<tr>
<td>Destination Address</td>
<td>all</td>
</tr>
<tr>
<td>Schedule</td>
<td>Always</td>
</tr>
<tr>
<td>Service</td>
<td>ANY</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>Enable NAT</td>
<td>Enable</td>
</tr>
</tbody>
</table>

To add the security policies - CLI

```
config firewall policy
edit 1
 set srcintf VLAN_100
 set srcaddr VLAN_100_Net
 set dstintf VLAN_200
 set dstaddr VLAN_200_Net
 set schedule always
 set service ANY
 set action accept
 set nat enable
 set status enable
next
edit 2
 set srcintf VLAN_200
 set srcaddr VLAN_200_Net
 set dstintf VLAN_100
 set dstaddr VLAN_100_Net
 set schedule always
 set service ANY
 set action accept
 set nat enable
 set status enable
next
edit 3
 set srcintf VLAN_100
 set srcaddr VLAN_100_Net
 set dstintf external
 set dstaddr all
 set schedule always
 set service ANY
 set action accept
```
Example VLAN configuration in NAT mode

Virtual LANs

set nat enable
set status enable
next
edit 4
set srcintf VLAN_200
set srcaddr VLAN_200_Net
set dstintf external
set dstaddr all
set schedule always
set service ANY
set action accept
set nat enable
set status enable
end

Configure the VLAN switch

On the Cisco Catalyst 2950 Catalyst VLAN switch, you need to define VLANs 100 and 200 in the VLAN database, and then add a configuration file to define the VLAN subinterfaces and the 802.1Q trunk interface.

One method to configure a Cisco switch is to connect over a serial connection to the console port on the switch, and enter the commands at the CLI. Another method is to designate one interface on the switch as the management interface and use a web browser to connect to the switch’s graphical interface. For details on connecting and configuring your Cisco switch, refer to the installation and configuration manuals for the switch.

The switch used in this example is a Cisco Catalyst 2950 switch. The commands used are IOS commands. Refer to the switch manual for help with these commands.

To configure the VLAN subinterfaces and the trunk interfaces

Add this file to the Cisco switch:

```
! interface FastEthernet0/3
 switchport access vlan 100
! interface FastEthernet0/9
 switchport access vlan 200
! interface FastEthernet0/24
 switchport trunk encapsulation dot1q
 switchport mode trunk
```

The switch has the configuration:

<table>
<thead>
<tr>
<th>Port 0/3</th>
<th>VLAN ID 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 0/9</td>
<td>VLAN ID 200</td>
</tr>
<tr>
<td>Port 0/24</td>
<td>802.1Q trunk</td>
</tr>
</tbody>
</table>

To complete the setup, configure devices on VLAN_100 and VLAN_200 with default gateways. The default gateway for VLAN_100 is the FortiGate VLAN_100 subinterface. The default gateway for VLAN_200 is the FortiGate VLAN_200 subinterface.
Test the configuration

Use diagnostic commands, such as `tracert`, to test traffic routed through the FortiGate unit and the Cisco switch.

Testing traffic from VLAN_100 to VLAN_200

In this example, a route is traced between the two internal networks. The route target is a host on VLAN_200.

Access a command prompt on a Windows computer on the VLAN_100 network, and enter the following command:

```
C:\>tracert 10.1.2.2
Tracing route to 10.1.2.2 over a maximum of 30 hops:
 1 <10 ms <10 ms <10 ms 10.1.1.1
 2 <10 ms <10 ms <10 ms 10.1.2.2
Trace complete.
```

Testing traffic from VLAN_200 to the external network

In this example, a route is traced from an internal network to the external network. The route target is the external network interface of the FortiGate-800 unit.

From VLAN_200, access a command prompt and enter this command:

```
C:\>tracert 172.16.21.2
Tracing route to 172.16.21.2 over a maximum of 30 hops:
 1 <10 ms <10 ms <10 ms 10.1.2.1
 2 <10 ms <10 ms <10 ms 172.16.21.2
Trace complete.
```

See also

VLANs in transparent mode

In transparent mode, the FortiGate unit behaves like a layer-2 bridge but can still provide services such as antivirus scanning, web filtering, spam filtering and intrusion protection to traffic. There are some limitations in transparent mode in that you cannot use SSL VPN, PPTP/L2TP VPN, DHCP server, or easily perform NAT on traffic. The limits in transparent mode apply to IEEE 802.1Q VLAN trunks passing through the unit.

VLANs and transparent mode

You can insert the FortiGate unit operating in transparent mode into the VLAN trunk without making changes to your network. In a typical configuration, the FortiGate unit internal interface accepts VLAN packets on a VLAN trunk from a VLAN switch or router connected to internal network VLANs. The FortiGate external interface forwards VLAN-tagged packets through another VLAN trunk to an external VLAN switch or router and on to external networks such as the Internet. You can configure the unit to apply different policies for traffic on each VLAN in the trunk.
To pass VLAN traffic through the FortiGate unit, you add two VLAN subinterfaces with the same VLAN ID, one to the internal interface and the other to the external interface. You then create a security policy to permit packets to flow from the internal VLAN interface to the external VLAN interface. If required, you create another security policy to permit packets to flow from the external VLAN interface to the internal VLAN interface. Typically in transparent mode, you do not permit packets to move between different VLANs. Network protection features, such as spam filtering, web filtering and anti-virus scanning, are applied through the UTM profiles specified in each security policy, enabling very detailed control over traffic.

When the FortiGate unit receives a VLAN-tagged packet at a physical interface, it directs the packet to the VLAN subinterface with the matching VLAN ID. The VLAN tag is removed from the packet, and the FortiGate unit then applies security policies using the same method it uses for non-VLAN packets. If the packet exits the FortiGate unit through a VLAN subinterface, the VLAN ID for that subinterface is added to the packet and the packet is sent to the corresponding physical interface. For a configuration example, see “Example of VLANs in transparent mode” on page 226.

There are two essential steps to configure your FortiGate unit to work with VLANs in transparent mode:

- Add VLAN subinterfaces
- Create security policies

You can also configure the protection profiles that manage antivirus scanning, web filtering and spam filtering. For more information on UTM profiles, see the UTM Guide.

**Add VLAN subinterfaces**

The VLAN ID of each VLAN subinterface must match the VLAN ID added by the IEEE 802.1Q-compliant router or switch. The VLAN ID can be any number between 1 and 4094, with 0 being used only for high priority frames and 4095 being reserved. You add VLAN subinterfaces to the physical interface that receives VLAN-tagged packets.

For this example, we are creating a VLAN called internal_v225 on the internal interface, with a VLAN ID of 225. Administrative access is enabled for HTTPS and SSH. VDOMs are not enabled.

**To add VLAN subinterfaces in transparent mode - web-based manager**

1. Go to **System > Network > Interface**.
2. Select **Create New**.
3. Enter the following information and select **OK**.

<table>
<thead>
<tr>
<th>Name</th>
<th>internal_v225</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>VLAN</td>
</tr>
<tr>
<td>Interface</td>
<td>internal</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>225</td>
</tr>
<tr>
<td>Ping Server</td>
<td>not enabled</td>
</tr>
<tr>
<td>Administrative Access</td>
<td>Enable HTTPS, and SSH. These are very secure access methods.</td>
</tr>
<tr>
<td>Description</td>
<td>VLAN 225 on internal interface</td>
</tr>
</tbody>
</table>

The FortiGate unit adds the new subinterface to the interface that you selected.
Repeat steps 2 and 3 to add additional VLANs. You will need to change the VLAN ID, Name, and possibly Interface when adding additional VLANs.

**To add VLAN subinterfaces in transparent mode - CLI**

```
config system interface
edit internal_v225
 set interface internal
 set vlanid 225
 set allowaccess HTTPS SSH
 set description "VLAN 225 on internal interface"
 set vdom root
end
```

**Create security policies**

In transparent mode, the FortiGate unit performs antivirus and antispam scanning on each VLAN’s packets as they pass through the unit. You need security policies to permit packets to pass from the VLAN interface where they enter the unit to the VLAN interface where they exit the unit. If there are no security policies configured, no packets will be allowed to pass from one interface to another.

**To add security policies for VLAN subinterfaces - web based manager**

1. Go to Firewall Objects > Address > Address.
2. Select Create New to add firewall addresses that match the source and destination IP addresses of VLAN packets.
3. Go to Policy > Policy > Policy.
4. Select Create New.
5. From the Source Interface/Zone list, select the VLAN interface where packets enter the unit.
6. From the Destination Interface/Zone list, select the VLAN interface where packets exit the unit.
7. Select the Source and Destination Address names that you added in step 2.
8. Select Protection Profile, and select the profile from the list.
9. Configure other settings as required.
10. Select OK.

**To add security policies for VLAN subinterfaces - CLI**

```
config firewall address
edit incoming_VLAN_address
 set associated-interface <incoming_VLAN_interface>
 set type ipmask
 set subnet <IPv4_address_mask>
next
edit outgoing_VLAN_address
 set associated-interface <outgoing_VLAN_interface>
 set type ipmask
 set subnet <IPv4_address_mask>
next
end
config firewall policy
edit <unused_policy_number>
```
Example of VLANs in transparent mode

In this example, the FortiGate unit is operating in transparent mode and is configured with two VLANs: one with an ID of 100 and the other with ID 200. The internal and external physical interfaces each have two VLAN subinterfaces, one for VLAN_100 and one for VLAN_200.

The IP range for the internal VLAN_100 network is 10.100.0.0/255.255.0.0, and for the internal VLAN_200 network is 10.200.0.0/255.255.0.0.

The internal networks are connected to a Cisco 2950 VLAN switch, which combines traffic from the two VLANs onto one the FortiGate unit internal interface. The VLAN traffic leaves the FortiGate unit on the external network interface, goes on to the VLAN switch, and on to the Internet. When the FortiGate units receives a tagged packet, it directs it from the incoming VLAN subinterface to the outgoing VLAN subinterface for that VLAN.

This section describes how to configure a FortiGate-800 unit, Cisco switch, and Cisco router in the network topology shown in Figure 180.

Figure 19: VLAN transparent network topology
Virtual LANs

General configuration steps

The following steps summarize the configuration for this example. For best results, follow
the procedures in the order given. Also, note that if you perform any additional actions
between procedures, your configuration may have different results.

1 Configure the FortiGate unit which includes
   • Adding VLAN subinterfaces
   • Adding the security policies
2 Configure the Cisco switch and router

Configure the FortiGate unit

The FortiGate unit must be configured with the VLAN subinterfaces and the proper
security policies to enable traffic to flow through the FortiGate unit.

Add VLAN subinterfaces

For each VLAN, you need to create a VLAN subinterface on the internal interface and
another one on the external interface, both with the same VLAN ID.

To add VLAN subinterfaces - web-based manager

1 Go to System > Network > Interface.
2 Select Create New.
3 Enter the following information and select OK:

<table>
<thead>
<tr>
<th>Name</th>
<th>VLAN_100_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>internal</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>100</td>
</tr>
</tbody>
</table>

4 Select Create New.
5 Enter the following information and select OK:

<table>
<thead>
<tr>
<th>Name</th>
<th>VLAN_100_ext</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>external</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>100</td>
</tr>
</tbody>
</table>

6 Select Create New.
7 Enter the following information and select OK:

<table>
<thead>
<tr>
<th>Name</th>
<th>VLAN_200_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>internal</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>200</td>
</tr>
</tbody>
</table>

8 Select Create New.
9 Enter the following information and select OK:

<table>
<thead>
<tr>
<th>Name</th>
<th>VLAN_200_ext</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>external</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>200</td>
</tr>
</tbody>
</table>
To add VLAN subinterfaces - CLI

```
config system interface
 edit VLAN_100_int
 set status down
 set type vlan
 set interface internal
 set vlanid 100
 next
 edit VLAN_100_ext
 set status down
 set type vlan
 set interface external
 set vlanid 100
 next
 edit VLAN_200_int
 set status down
 set type vlan
 set interface internal
 set vlanid 200
 next
 edit VLAN_200_ext
 set status down
 set type vlan
 set interface external
 set vlanid 200
end
```

Add the security policies

Security policies allow packets to travel between the VLAN_100_int interface and the VLAN_100_ext interface. Two policies are required; one for each direction of traffic. The same is required between the VLAN_200_int interface and the VLAN_200_ext interface, for a total of four required security policies.

To add the security policies - web-based manager

1. Go to Policy > Policy > Policy.
2. Select Create New.
3. Enter the following information and select OK:

<table>
<thead>
<tr>
<th>Source Interface/Zone</th>
<th>VLAN_100_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>all</td>
</tr>
<tr>
<td>Destination Interface/Zone</td>
<td>VLAN_100_ext</td>
</tr>
<tr>
<td>Destination Address</td>
<td>all</td>
</tr>
<tr>
<td>Schedule</td>
<td>Always</td>
</tr>
<tr>
<td>Service</td>
<td>ANY</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>

4. Select Create New.
5. Enter the following information and select OK:
To add the security policies - CLI

```
config firewall policy
edit 1
 set srcintf VLAN_100_int
 set srcaddr all
 set dstintf VLAN_100_ext
 set dstaddr all
 set action accept
 set schedule always
```
Configure the Cisco switch and router

This example includes configuration for the Cisco Catalyst 2900 ethernet switch, and for the Cisco Multiservice 2620 ethernet router. If you have access to a different VLAN enabled switch or VLAN router you can use them instead, however their configuration is not included in this document.

Configure the Cisco switch

On the VLAN switch, you need to define VLAN_100 and VLAN_200 in the VLAN database and then add a configuration file to define the VLAN subinterfaces and the 802.1Q trunk interface.

Add this file to the Cisco switch:

```
set service ANY
next
edit 2
set srcintf VLAN_100_ext
set srcaddr all
set dstintf VLAN_100_int
set dstaddr all
set action accept
set schedule always
set service ANY
next
edit 3
set srcintf VLAN_200_int
set srcaddr all
set dstintf VLAN_200_ext
set dstaddr all
set action accept
set schedule always
set service ANY
next
edit 4
set srcintf VLAN_200_ext
set srcaddr all
set dstintf VLAN_200_int
set dstaddr all
set action accept
set schedule always
set service ANY
end
```

```
interface FastEthernet0/3
 switchport access vlan 100
!
interface FastEthernet0/9
 switchport access vlan 200
!
interface FastEthernet0/24
 switchport trunk encapsulation dot1q
 switchport mode trunk
!
```

The switch has the following configuration:
Configure the Cisco router

You need to add a configuration file to the Cisco Multiservice 2620 ethernet router. The file defines the VLAN subinterfaces and the 802.1Q trunk interface on the router. The 802.1Q trunk is the physical interface on the router.

The IP address for each VLAN on the router is the gateway for that VLAN. For example, all devices on the internal VLAN_100 network will have 10.100.0.1 as their gateway.

Add this file to the Cisco router:

```
!
interface FastEthernet0/0

interface FastEthernet0/0.1
 encapsulation dot1Q 100
 ip address 10.100.0.1 255.255.255.0

interface FastEthernet0/0.2
 encapsulation dot1Q 200
 ip address 10.200.0.1 255.255.255.0

The router has the following configuration:

<table>
<thead>
<tr>
<th>Port</th>
<th>VLAN ID/Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/0.1</td>
<td>VLAN ID 100</td>
</tr>
<tr>
<td>0/0.2</td>
<td>VLAN ID 200</td>
</tr>
<tr>
<td>0/0</td>
<td>802.1Q trunk</td>
</tr>
</tbody>
</table>
```

Test the configuration

Use diagnostic network commands such as traceroute (tracert) and ping to test traffic routed through the network.

Testing traffic from VLAN_100 to VLAN_200

In this example, a route is traced between the two internal networks. The route target is a host on VLAN_200. The Windows traceroute command tracert is used.

From VLAN_100, access a Windows command prompt and enter this command:

```
C:\>tracert 10.1.2.2
Tracing route to 10.1.2.2 over a maximum of 30 hops:
 1 <10 ms <10 ms <10 ms 10.1.1.1
 2 <10 ms <10 ms <10 ms 10.1.2.2
Trace complete.
```

Troubleshooting VLAN issues

Several problems can occur with your VLANs. Since VLANs are interfaces with IP addresses, they behave as interfaces and can have similar problems that you can diagnose with tools such as ping, traceroute, packet sniffing, and diag debug.
Asymmetric routing

You might discover unexpectedly that hosts on some networks are unable to reach certain other networks. This occurs when request and response packets follow different paths. If the FortiGate unit recognizes the response packets, but not the requests, it blocks the packets as invalid. Also, if the FortiGate unit recognizes the same packets repeated on multiple interfaces, it blocks the session as a potential attack.

This is asymmetric routing. By default, the FortiGate unit blocks packets or drops the session when this happens. You can configure the FortiGate unit to permit asymmetric routing by using the following CLI commands:

```
config vdom
 edit <vdom_name>
 config system settings
 set asymroute enable
 end
 end
end
```

If VDOMs are enabled, this command is per VDOM. You must set it for each VDOM that has the problem. If this solves your blocked traffic issue, you know that asymmetric routing is the cause. But allowing asymmetric routing is not the best solution, because it reduces the security of your network.

For a long-term solution, it is better to change your routing configuration or change how your FortiGate unit connects to your network. The Asymmetric Routing and Other FortiGate Layer-2 Installation Issues technical note provides detailed examples of asymmetric routing situations and possible solutions.

Layer-2 and Arp traffic

By default, FortiGate units do not pass layer-2 traffic. If there are layer-2 protocols such as IPX, PPTP or L2TP in use on your network, you need to configure your FortiGate unit interfaces to pass these protocols without blocking. Another type of layer-2 traffic is ARP traffic. For more information on ARP traffic, see “ARP traffic” on page 233.

You can allow these layer-2 protocols using the CLI command:

```
config vdom
 edit <vdom_name>
 config system interface
 edit <name_str>
 set l2forward enable
 end
 end
end
```

where `<name_str>` is the name of an interface.

If VDOMs are enabled, this command is per VDOM. You must set it for each VDOM that has the problem. If you enable layer-2 traffic, you may experience a problem if packets are allowed to repeatedly loop through the network. This repeated looping, very similar to a broadcast storm, occurs when you have more than one layer-2 path to a destination. Traffic may overflow and bring your network to a halt. You can break the loop by enabling Spanning Tree Protocol (STP) on your network’s switches and routers. For more information, see “STP forwarding” on page 1262.
ARP traffic

Address Resolution Protocol (ARP) packets are vital to communication on a network, and ARP support is enabled on FortiGate unit interfaces by default. Normally you want ARP packets to pass through the FortiGate unit, especially if it is sitting between a client and a server or between a client and a router.

ARP traffic can cause problems, especially in transparent mode where ARP packets arriving on one interface are sent to all other interfaces including VLAN subinterfaces. Some layer-2 switches become unstable when they detect the same MAC address originating on more than one switch interface or from more than one VLAN. This instability can occur if the layer-2 switch does not maintain separate MAC address tables for each VLAN. Unstable switches may reset and cause network traffic to slow down considerably.

Multiple VDOMs solution

By default, physical interfaces are in the root domain. If you do not configure any of your VLANs in the root VDOM, it will not matter how many interfaces are in the root VDOM.

The multiple VDOMs solution is to configure multiple VDOMs on the FortiGate unit, one for each VLAN. In this solution, you configure one inbound and one outbound VLAN interface in each VDOM. ARP packets are not forwarded between VDOMs. This configuration limits the VLANs in a VDOM and correspondingly reduces the administration needed per VDOM.

As a result of this configuration, the switches do not receive multiple ARP packets with duplicate MACs. Instead, the switches receive ARP packets with different VLAN IDs and different MACs. Your switches are stable.

However, you should not use the multiple VDOMs solution under any of the following conditions:

- you have more VLANs than licensed VDOMs
- you do not have enough physical interfaces

Instead, use one of two possible solutions, depending on which operation mode you are using:

- In NAT mode, you can use the `vlan forward` CLI command.
- In transparent mode, you can use the `forward-domain` CLI command. But you still need to be careful in some rare configurations.

Vlanforward solution

If you are using NAT mode, the solution is to use the `vlanforward` CLI command for the interface in question. By default, this command is enabled and will forward VLAN traffic to all VLANs on this interface. When disabled, each VLAN on this physical interface can send traffic only to the same VLAN. There is no "cross-talk" between VLANs, and ARP packets are forced to take one path along the network which prevents the multiple paths problem.

In the following example, `vlanforward` is disabled on port1. All VLANs configured on port1 will be separate and will not forward any traffic to each other.

```
config system interface
 edit port1
 set vlanforward disable
 end
```
Forward-domain solution

If you are using transparent mode, the solution is to use the forward-domain CLI command. This command tags VLAN traffic as belonging to a particular collision group, and only VLANs tagged as part of that collision group receive that traffic. It is like an additional set of VLANs. By default, all interfaces and VLANs are part of forward-domain collision group 0. The many benefits of this solution include reduced administration, the need for fewer physical interfaces, and the availability of more flexible network solutions.

In the following example, forward-domain collision group 340 includes VLAN 340 traffic on port 1 and untagged traffic on port 2. Forward-domain collision group 341 includes VLAN 341 traffic on port 1 and untagged traffic on port 3. All other interfaces are part of forward-domain collision group 0 by default. This configuration separates VLANs 340 and 341 from each other on port 1, and prevents the ARP packet problems from before.

Use these CLI commands:

```
config system interface
 edit port1
 next
 edit port2
 set forward_domain 340
 next
 edit port3
 set forward_domain 341
 next
 edit port1-340
 set forward_domain 340
 set interface port1
 set vlanid 340
 next
 edit port1-341
 set forward_domain 341
 set interface port1
 set vlanid 341
end
```

You may experience connection issues with layer-2 traffic, such as ping, if your network configuration has:

- packets going through the FortiGate unit in transparent mode more than once
- more than one forwarding domain (such as incoming on one forwarding domain and outgoing on another)
- IPS and AV enabled.

Now IPS and AV is applied the first time packets go through the FortiGate unit, but not on subsequent passes. Only applying IPS and AV to this first pass fixes the network layer-2 related connection issues.

NetBIOS

Computers running Microsoft Windows operating systems that are connected through a network rely on a WINS server to resolve host names to IP addresses. The hosts communicate with the WINS server by using the NetBIOS protocol.

To support this type of network, you need to enable the forwarding of NetBIOS requests to a WINS server. The following example will forward NetBIOS requests on the internal interface for the WINS server located at an IP address of 192.168.111.222.
STP forwarding

The FortiGate unit does not participate in the Spanning Tree Protocol (STP). STP is an IEEE 802.1 protocol that ensures there are no layer-2 loops on the network. Loops are created when there is more than one route for traffic to take and that traffic is broadcast back to the original switch. This loop floods the network with traffic, reducing available bandwidth to nothing.

If you use your FortiGate unit in a network topology that relies on STP for network loop protection, you need to make changes to your FortiGate configuration. Otherwise, STP recognizes your FortiGate unit as a blocked link and forwards the data to another path. By default, your FortiGate unit blocks STP as well as other non-IP protocol traffic.

Using the CLI, you can enable forwarding of STP and other layer-2 protocols through the interface. In this example, layer-2 forwarding is enabled on the external interface:

```plaintext
config system interface
edit external
set l2forward enable
set stpforward enable
end
```

By substituting different commands for `stpforward enable`, you can also allow layer-2 protocols such as IPX, PPTP or L2TP to be used on the network. For more information, see “Layer-2 and Arp traffic” on page 232.

Too many VLAN interfaces

Any virtual domain can have a maximum of 255 interfaces in transparent mode. This includes VLANs, other virtual interfaces, and physical interfaces. NAT mode supports from 255 to 8192 depending on the FortiGate model. This total number of interfaces includes VLANs, other virtual interfaces, and physical interfaces.

Your FortiGate unit may allow you to configure more interfaces than this. However, if you configure more than 255 interfaces, your system will become unstable and, over time, will not work properly. As all interfaces are used, they will overflow the routing table that stores the interface information, and connections will fail. When you try to add more interfaces, an error message will state that the maximum limit has already been reached.

If you see this error message, chances are you already have too many VLANs on your system and your routing has become unstable. To verify, delete a VLAN and try to add it back. If you have too many, you will not be able to add it back on to the system. In this case, you will need to remove enough interfaces (including VLANs) so that the total number of interfaces drops to 255 or less. After doing this, you should also reboot your FortiGate unit to clean up its memory and buffers, or you will continue to experience unstable behavior.

```plaintext
config system interface
edit internal
 set netbios_forward enable
 set wins-ip 192.168.111.222
end
```

These commands apply only in NAT mode. If VDOMs are enabled, these commands are per VDOM. You must set them for each VDOM that has the problem.
To configure more than 255 interfaces on your FortiGate unit in transparent mode, you have to configure multiple VDOMs, each with many VLANs. However, if you want to create more than the default 10 VDOMs (or a maximum of 2550 interfaces), you must buy a license for additional VDOMs. Only FortiGate models 3000 and higher support more than 10 VDOMs.

With these extra licenses, you can configure up to 500 VDOMs, with each VDOM containing up to 255 VLANs in transparent mode. This is a theoretical maximum of over 127,500 interfaces. However, system resources will quickly get used up before reaching that theoretical maximum. To achieve the maximum number of VDOMs, you need to have top-end hardware with the most resources possible.

In NAT mode, if you have a top-end model, the maximum interfaces per VDOM can be as high as 8192, enough for all the VLANs in your configuration.

Your FortiGate unit has limited resources, such as CPU load and memory, that are divided between all configured VDOMs. When running 250 or more VDOMs, you may need to monitor the system resources to ensure there is enough to support the configured traffic processing.
PPTP and L2TP

A virtual private network (VPN) is a way to use a public network, such as the Internet, as a vehicle to provide remote offices or individual users with secure access to private networks. FortiOS supports the Point-to-Point Tunneling Protocol (PPTP), which enables interoperability between FortiGate units and Windows or Linux PPTP clients. Because FortiGate units support industry standard PPTP VPN technologies, you can configure a PPTP VPN between a FortiGate unit and most third-party PPTP VPN peers.

This section describes how to configure PPTP and L2TP VPNs as well as PPTP passthrough.

This section includes the topics:
- How PPTP VPNs work
- FortiGate unit as a PPTP server
- Configuring the FortiGate unit for PPTP VPN
- Configuring the FortiGate unit for PPTP pass through
- Testing PPTP VPN connections
- Logging VPN events
- Configuring L2TP VPNs
- L2TP configuration overview

How PPTP VPNs work

The Point-to-Point Tunneling Protocol enables you to create a VPN between a remote client and your internal network. Because it is a Microsoft Windows standard, PPTP does not require third-party software on the client computer. As long as the ISP supports PPTP on its servers, you can create a secure connection by making relatively simple configuration changes to the client computer and the FortiGate unit.

PPTP uses Point-to-Point protocol (PPP) authentication protocols so that standard PPP software can operate on tunneled PPP links. PPTP packages data in PPP packets and then encapsulates the PPP packets within IP packets for transmission through a VPN tunnel.

When the FortiGate unit acts as a PPTP server, a PPTP session and tunnel is created as soon as the PPTP client connects to the FortiGate unit. More than one PPTP session can be supported on the same tunnel. FortiGate units support PAP, CHAP, and plain text authentication. PPTP clients are authenticated as members of a user group.

Traffic from one PPTP peer is encrypted using PPP before it is encapsulated using Generic Routing Encapsulation (GRE) and routed to the other PPTP peer through an ISP network. PPP packets from the remote client are addressed to a computer on the private network behind the FortiGate unit. PPTP packets from the remote client are addressed to the public interface of the FortiGate unit. See Figure 20 on page 238.
PPTP control channel messages are not authenticated, and their integrity is not protected. Furthermore, encapsulated PPP packets are not cryptographically protected and may be read or modified unless appropriate encryption software such as Secure Shell (SSH) or Secure File Transfer Protocol (SFTP) is used to transfer data after the tunnel has been established.

As an alternative, you can use encryption software such as Microsoft Point-to-Point Encryption (MPPE) to secure the channel. MPPE is built into Microsoft Windows clients and can be installed on Linux clients. FortiGate units support MPPE.

**Figure 20: Packet encapsulation**

In Figure 20, traffic from the remote client is addressed to a computer on the network behind the FortiGate unit. When the PPTP tunnel is established, packets from the remote client are encapsulated and addressed to the FortiGate unit. The FortiGate unit forwards disassembled packets to the computer on the internal network.

When the remote PPTP client connects, the FortiGate unit assigns an IP address from a reserved range of IP addresses to the client PPTP interface. The PPTP client uses the assigned IP address as its source address for the duration of the connection.

When the FortiGate unit receives a PPTP packet, the unit disassembles the PPTP packet and forwards the packet to the correct computer on the internal network. The security policy and protection profiles on the FortiGate unit ensure that inbound traffic is screened and processed securely.
PPTP clients must be authenticated before a tunnel is established. The authentication process relies on FortiGate user group definitions, which can optionally use established authentication mechanisms such as RADIUS or LDAP to authenticate PPTP clients. All PPTP clients are challenged when a connection attempt is made.

**FortiGate unit as a PPTP server**

In the most common Internet scenario, the PPTP client connects to an ISP that offers PPP connections with dynamically-assigned IP addresses. The ISP forwards PPTP packets to the Internet, where they are routed to the FortiGate unit.

![Figure 21: FortiGate unit as a PPTP server](image)

If the FortiGate unit will act as a PPTP server, there are a number of steps to complete:

- Configure user authentication for PPTP clients.
- Enable PPTP.
- Specify the range of addresses that are assigned to PPTP clients when connecting
- Configure the security policy.

**Configuring user authentication for PPTP clients**

To enable authentication for PPTP clients, you must create user accounts and a user group to identify the PPTP clients that need access to the network behind the FortiGate unit. Within the user group, you must add a user for each PPTP client.

You can choose to use a plain text password for authentication or forward authentication requests to an external RADIUS, LDAP, or TACACS+ server. If password protection will be provided through a RADIUS, LDAP, or TACACS+ server, you must configure the FortiGate unit to forward authentication requests to the authentication server.

This example creates a basic user/password combination.
Configuring a user account

To add a local user - web-based manager
1. Go to User > User > User and select Create New.
2. Enter a User Name.
3. Enter a Password for the user. The password should be at least six characters.
4. Select OK.

To add a local user - CLI

```
config user local
edit <username>
 set type password
 set passwd <password>
end
```

Configuring a user group

To ease configuration, create user groups that contain users in similar categories or departments.

To create a user group - web-based manager
2. Enter a Name for the group.
3. Select the Type of Firewall.
4. From the Available Users list, select the required users and select the right-facing arrow to add them to the Members list.
5. Select OK.

To create a user group - CLI

```
config user group
edit <group_name>
 set group-type firewall
 set members <user_names>
end
```

Enabling PPTP and specifying the PPTP IP address range

The PPTP address range specifies the range of addresses reserved for remote PPTP clients. When a PPTP client connects to the FortiGate unit, the client is assigned an IP address from this range. Afterward, the FortiGate unit uses the assigned address to communicate with the PPTP client.

The address range that you reserve can be associated with private or routable IP addresses. If you specify a private address range that matches a network behind the FortiGate unit, the assigned address will make the PPTP client appear to be part of the internal network.
PPTP requires two IP addresses, one for each end of the tunnel. The PPTP address range is the range of addresses reserved for remote PPTP clients. When the remote PPTP client establishes a connection, the FortiGate unit assigns an IP address from the reserved range of IP addresses to the client PPTP interface or retrieves the assigned IP address from the PPTP user group. If you use the PPTP user group, you must also define the FortiGate end of the tunnel by entering the IP address of the unit in Local IP (web-based manager) or local-ip (CLI). The PPTP client uses the assigned IP address as its source address for the duration of the connection.

PPTP configuration is only available through the CLI. In the example below, PPTP is enabled with the use of an IP range of 182.168.1.1 to 192.168.1.10 for addressing.

```
config vpn pptp
 set status enable
 set ip-mode range
 set eip 192.168.1.10
 set sip 192.168.1.1
end
```

In this example, PPTP is enabled with the use of a user group for addressing, where the IP address of the PPTP server is 192.168.1.2 and the user group is hr_admin.

```
config vpn pptp
 set status enable
 set ip-mode range
 set local-ip 192.168.2.1
 set usgrp hr_admin
end
```

Adding the security policy

The security policy specifies the source and destination addresses that can generate traffic inside the PPTP tunnel and defines the scope of services permitted through the tunnel. If a selection of services are required, define a service group.

To configure the firewall for the PPTP tunnel - web-based manager

1. Go to Policy > Policy > Policy and select Create New.
2. Complete the following and select OK:

<table>
<thead>
<tr>
<th>Source Interface/Zone</th>
<th>The FortiGate interface connected to the Internet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>Select the name that corresponds to the range of addresses that you reserved for PPTP clients</td>
</tr>
<tr>
<td>Destination Interface/Zone</td>
<td>The FortiGate interface connected to the internal network.</td>
</tr>
<tr>
<td>Destination Address</td>
<td>Select the name that corresponds to the IP addresses behind the FortiGate unit</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ANY</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>
Configuring the FortiGate unit for PPTP VPN

To configure the firewall for the PPTP tunnel - CLI

```
config firewall policy
edit 1
 set srcintf <interface to internet>
 set dstintf <interface to internal network>
 set srcaddr <reserved_range>
 set dstaddr <internal_addresses>
 set action accept
 set schedule always
 set service ANY
end
```

Configuring the FortiGate unit for PPTP VPN

To arrange for PPTP packets to pass through the FortiGate unit to an external PPTP server, perform the following tasks in the order given:

- Configure user authentication for PPTP clients.
- Enable PPTP on the FortiGate unit and specify the range of addresses that can be assigned to PPTP clients when they connect.
- Configure PPTP pass through on the FortiGate unit.

Configuring the FortiGate unit for PPTP pass through

To forward PPTP packets to a PPTP server on the network behind the FortiGate unit, you need to perform the following configuration tasks on the FortiGate unit:

- Define a virtual IP address that points to the PPTP server.
- Create a security policy that allows incoming PPTP packets to pass through to the PPTP server.

The address range is the external (public) IP address range which requires access to the internal PPTP server through the FortiGate virtual port-forwarding firewall. IP addresses used in this document are fictional and follow the technical documentation guidelines specific to Fortinet. Real external IP addresses are not used.

Configuring a virtual IP address

The virtual IP address will be the address of the PPTP server host.

To define a virtual IP for PPTP pass through - web-based manager

1. Go to Firewall Objects > Virtual IP > Virtual IP.
2. Select Create New.
3. Enter the name of the VIP, for example, PPTP_Server.
4. Select the External Interface where the packets will be received for the PPTP server.
5. Enter the External IP Address for the VIP.
6 Select Port Forwarding.
7 Set the Protocol to TCP.
8 Enter the External Service Port of 1723, the default for PPTP.
9 Enter the Map to Port to 1723.
10 Select OK.

To define a virtual IP for PPTP pass through - web-based manager

```plaintext
config firewall vip
edit PPTP_Server
set extInf <interface>
set extip <ip_address>
set portforward enable
set protocol tcp
set extport 1723
set mappedport 1723
end
```

**Configuring a port-forwarding security policy**

To create a port-forwarding security policy for PPTP pass through you must first create an address range reserved for the PPTP clients.

**To create an address range - web-based manager**

1 Go to Firewall Objects > Address > Address and select Create New.
2 Enter a Name for the range, for example, External_PPTP.
3 Select a Type of Subnet/IP Range.
4 Enter the IP address range.
5 Select the Interface to the Internet.
6 Select OK.

**To create an address range - CLI**

```plaintext
config firewall address
edit External_PPTP
set iprange <ip_range>
set start-ip <ip_address>
set end-ip <ip_address>
set associated-interface <internet_interface>
end
```

With the address set, you can add the security policy.

**To add the security policy - web-based manager**

1 Go to Policy > Policy > Policy and select Create New.
2 Complete the following and select OK:

<table>
<thead>
<tr>
<th>Source Interface/Zone</th>
<th>The FortiGate interface connected to the Internet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>Select the address range created in the previous step.</td>
</tr>
<tr>
<td>Destination Interface/Zone</td>
<td>The FortiGate interface connected to the PPTP server.</td>
</tr>
</tbody>
</table>
Testing PPTP VPN connections

To confirm that a PPTP VPN between a local network and a dialup client has been configured correctly, at the dialup client, issue a ping command to test the connection to the local network. The PPTP VPN tunnel initializes when the dialup client attempts to connect.

Logging VPN events

PPTP VPN, activity is logged when enabling VPN logging. The FortiGate unit connection events and tunnel status (up/down) are logged.

To log VPN events
2. Enable the storage of log messages to one or more locations.
3. Select L2TP/PPTP/PPPoE service event.
4. Select Apply.

To view event logs
2. If the option is available from the Log Type list, select the log file from disk or memory.

Configuring L2TP VPNs

This section describes how to configure a FortiGate unit to establish a Layer Two Tunneling Protocol (L2TP) tunnel with a remote dialup client. The FortiGate implementation of L2TP enables a remote dialup client to establish an L2TP tunnel with the FortiGate unit directly.

<table>
<thead>
<tr>
<th>Destination Address</th>
<th>Select the VIP address created in the previous steps.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>PPTP</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>

To add the security policy - CLI

```
config firewall policy
edit <policy_number>
 set srcintf <interface to internet>
 set dstintf <interface to PPTP server>
 set srcaddr <address_range>
 set dstaddr <PPTP_server_address>
 set action accept
 set schedule always
 set service PPTP
end
```
According to RFC 2661, an Access Concentrator (LAC) can establish an L2TP tunnel with an L2TP Network Server (LNS). In a typical scenario, the LAC is managed by an ISP and located on the ISP premises; the LNS is the gateway to a private network. When a remote dialup client connects to the Internet through the ISP, the ISP uses a local database to establish the identity of the caller and determine whether the caller needs access to an LNS through an L2TP tunnel. If the services registered to the caller indicate that an L2TP connection to the LNS is required, the ISP LAC attempts to establish an L2TP tunnel with the LNS.

A FortiGate unit can be configured to act as an LNS. The FortiGate implementation of L2TP enables a remote dialup client to establish an L2TP tunnel with the FortiGate unit directly, bypassing any LAC managed by an ISP. The ISP must configure its network access server to forward L2TP traffic from the remote client to the FortiGate unit directly whenever the remote client requires an L2TP connection to the FortiGate unit.

When the FortiGate unit acts as an LNS, an L2TP session and tunnel is created as soon as the remote client connects to the FortiGate unit. The FortiGate unit assigns an IP address to the client from a reserved range of IP addresses. The remote client uses the assigned IP address as its source address for the duration of the connection.

More than one L2TP session can be supported on the same tunnel. FortiGate units can be configured to authenticate remote clients using a plain text user name and password, or authentication can be forwarded to an external RADIUS or LDAP server. L2TP clients are authenticated as members of a user group.

Traffic from the remote client must be encrypted using MPPE before it is encapsulated and routed to the FortiGate unit. Packets originating at the remote client are addressed to a computer on the private network behind the FortiGate unit. Encapsulated packets are addressed to the public interface of the FortiGate unit. See Figure 22.

When the FortiGate unit receives an L2TP packet, the unit disassembles the packet and forwards the packet to the correct computer on the internal network. The security policy and protection profiles on the FortiGate unit ensure that inbound traffic is screened and processed securely.
Network topology

The remote client connects to an ISP that determines whether the client requires an L2TP connection to the FortiGate unit. If an L2TP connection is required, the connection request is forwarded to the FortiGate unit directly.

Fortinet units cannot deliver non-IP traffic such as Frame Relay or ATM frames encapsulated in L2TP packets — FortiGate units support the IPv4 and IPv6 addressing schemes only.
L2TP infrastructure requirements

- The FortiGate unit must be operating in NAT mode and have a static public IP address.
- The ISP must configure its network access server to forward L2TP traffic from remote clients to the FortiGate unit directly.
- The remote client must not generate non-IP traffic (Frame Relay or ATM frames).
- The remote client includes L2TP support with MPPE encryption. If the remote client includes Microsoft L2TP with IPSec, the IPSec and certificate components must be disabled.

L2TP configuration overview

To configure a FortiGate unit to act as an LNS, you perform the following tasks on the FortiGate unit:

- Create an L2TP user group containing one user for each remote client.
- Enable L2TP on the FortiGate unit and specify the range of addresses that can be assigned to remote clients when they connect.
- Define firewall source and destination addresses to indicate where packets transported through the L2TP tunnel will originate and be delivered.
- Create the security policy and define the scope of permitted services between the source and destination addresses.
- Configure the remote clients.
Authenticating L2TP clients

L2TP clients must be authenticated before a tunnel is established. The authentication process relies on FortiGate user group definitions, which can optionally use established authentication mechanisms such as RADIUS or LDAP to authenticate L2TP clients. All L2TP clients are challenged when a connection attempt is made.

To enable authentication, you must create user accounts and a user group to identify the L2TP clients that need access to the network behind the FortiGate unit.

You can choose to use a plain text password for authentication or forward authentication requests to an external RADIUS or LDAP server. If password protection will be provided through a RADIUS or LDAP server, you must configure the FortiGate unit to forward authentication requests to the authentication server.

Enabling L2TP and specifying an address range

The L2TP address range specifies the range of addresses reserved for remote clients. When a remote client connects to the FortiGate unit, the client is assigned an IP address from this range. Afterward, the FortiGate unit uses the assigned address to communicate with the remote client.

The address range that you reserve can be associated with private or routable IP addresses. If you specify a private address range that matches a network behind the FortiGate unit, the assigned address will make the remote client appear to be part of the internal network.

To enable L2TP and specify the L2TP address range, use the `config vpn l2tp` CLI command.

The following example shows how to enable L2TP and set the L2TP address range using a starting address of 192.168.10.80 and an ending address of 192.168.10.100 for an existing group of L2TP users named L2TP_users:

```
config vpn l2tp
 set sip 192.168.10.80
 set eip 192.168.10.100
 set status enable
 set usrgrp L2TP_users
end
```

Defining firewall source and destination addresses

Before you define the security policy, you must define the source and destination addresses of packets that are to be transported through the L2TP tunnel:

- For the source address, enter the range of addresses that you reserved for remote L2TP clients (for example 192.168.10.80-100).
- For the destination address, enter the IP addresses of the computers that the L2TP clients need to access on the private network behind the FortiGate unit (for example, 172.16.5.0/24 for a subnet, or 172.16.5.1 for a server or host, or 192.168.10.10-15 for an IP address range).

To define the firewall source address

1. Go to Firewall Objects > Address and select Create New.
2. In the Address Name field, type a name that represents the range of addresses that you reserved for remote clients (for example, Ext_L2TPRange).
3. In Type, select Subnet / IP Range.
4. In the Subnet / IP Range field, type the corresponding IP address range.
PPTP and L2TP

Adding the security policy

The security policy specifies the source and destination addresses that can generate traffic inside the L2TP tunnel and defines the scope of services permitted through the tunnel. If a selection of services are required, define a service group.

To define the traffic and services permitted inside the L2TP tunnel

1. Go to Policy > Policy > Policy and select Create New.
2. Enter these settings in particular:

<table>
<thead>
<tr>
<th>Source Interface/Zone</th>
<th>Select the FortiGate interface to the Internet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>Select the name that corresponds to the range of addresses that you reserved for L2TP clients (for example, Ext_L2TPrange).</td>
</tr>
<tr>
<td>Destination Interface/Zone</td>
<td>Select the FortiGate interface to the internal (private) network.</td>
</tr>
<tr>
<td>Destination Address</td>
<td>Select the name that corresponds to the IP addresses behind the FortiGate unit (for example, Int_L2TPaccess).</td>
</tr>
<tr>
<td>Service</td>
<td>Select ANY, or if selected services are required instead, select the service group that you defined previously.</td>
</tr>
<tr>
<td>Action</td>
<td>Select ACCEPT.</td>
</tr>
</tbody>
</table>

3. You may enable NAT, a protection profile, and/or event logging, or select Enable Identity Based Policy to add authentication or shape traffic. For more information on identity based policies, see the Firewall Guide.

4. Select OK.

Configuring a Linux client

The following procedure outlines how to install L2TP client software and run an L2TP tunnel on a Linux computer. Obtain an L2TP client package that meets your requirements (for example, rp-l2tp). If needed to encrypt traffic, obtain L2TP client software that supports encryption using MPPE.

5. In Interface, select the FortiGate interface that connects to the clients. This is usually the interface that connects to the Internet.
6. Select OK.

To define the firewall destination address

1. Go to Firewall Objects > Address and select Create New.
2. In the Address Name field, type a name that represents a range of IP addresses on the network behind the FortiGate unit (for example, Int_L2TPaccess).
3. In Type, select Subnet / IP Range.
4. In the Subnet / IP Range field, type the corresponding IP address range.
5. In Interface, select the FortiGate interface that connects to the network behind the FortiGate unit.
6. Select OK.
To establish an L2TP tunnel with a FortiGate unit that has been set up to accept L2TP connections, you can obtain and install the client software following these guidelines:

1. If encryption is required but MPPE support is not already present in the kernel, download and install an MPPE kernel module and reboot your computer.
2. Download and install the L2TP client package.
3. Configure an L2TP connection to run the L2TP program.
4. Configure routes to determine whether all or some of your network traffic will be sent through the tunnel. You must define a route to the remote network over the L2TP link and a host route to the FortiGate unit.
5. Run `l2tpd` to start the tunnel.

Follow the software supplier's documentation to complete the steps.

To configure the system, you need to know the public IP address of the FortiGate unit, and the user name and password that has been set up on the FortiGate unit to authenticate L2TP clients. Contact the FortiGate administrator if required to obtain this information.

**Monitoring L2TP sessions**

You can display a list of all active sessions and view activity by port number. By default, port 1701 is used for L2TP VPN-related communications. If required, active sessions can be stopped from this view. Use the Top Sessions Dashboard Widget.

**Testing L2TP VPN connections**

To confirm that a VPN between a local network and a dialup client has been configured correctly, at the dialup client, issue a ping command to test the connection to the local network. The VPN tunnel initializes when the dialup client attempts to connect.

**Logging L2TP VPN events**

You can configure the FortiGate unit to log VPN events. For L2TP VPNs, connection events and tunnel status (up/down) are logged.

**To log VPN events - web-based manager**

2. Enable the storage of log messages to one or more locations.
3. Select `Enable`, and then select `L2TP/PPTP/PPPoE service event`.
4. Select `Apply`.

**To log VPN events - CLI**

```
config log memory setting
 set diskfull overright
 set status enable
end
config log eventfilter
 set ppp
end
```
Session helpers

The FortiOS firewall can analyze most TCP/IP protocol traffic by comparing packet header information to security policies. This comparison determines whether to accept or deny the packet and the session that the packet belongs to.

Some protocols include information in the packet body (or payload) that must be analyzed to successfully process sessions for this protocol. For example, the SIP VoIP protocol uses TCP control packets with a standard destination port to set up SIP calls. But the packets that carry the actual conversation can use a variety of UDP protocols with a variety of source and destination port numbers. The information about the protocols and port numbers used for a SIP call is contained in the body of the SIP TCP control packets. To successfully process SIP VoIP calls, FortiOS must be able to extract information from the body of the SIP packet and use this information to allow the voice-carrying packets through the firewall.

FortiOS uses session helpers to analyze the data in the packet bodies of some protocols and adjust the firewall to allow those protocols to send packets through the firewall.

This section includes the topics:

- Viewing the session helper configuration
- Changing the session helper configuration
- DCE-RPC session helper (dcerpc)
- DNS session helpers (dns-tcp and dns-udp)
- File transfer protocol (FTP) session helper (ftp)
- H.245 session helpers (h245I and h245O)
- H.323 and RAS session helpers (h323 and ras)
- Media Gateway Controller Protocol (MGCP) session helper (mgcp)
- ONC-RPC portmapper session helper (pmap)
- PPTP session helper for PPTP traffic (pptp)
- Remote shell session helper (rsh)
- Real-Time Streaming Protocol (RTSP) session helper (rtsp)
- Session Initiation Protocol (SIP) session helper (sip)
- Trivial File Transfer Protocol (TFTP) session helper (tftp)
- Oracle TNS listener session helper (tns)

Viewing the session helper configuration

You can view the session helpers enabled on your FortiGate unit in the CLI using the commands below. The following output shows the first two session helpers. The number of session helpers can vary to around 20.
Changing the session helper configuration

Normally you will not need to change the configuration of the session helpers. However in some cases you may need to change the protocol or port the session helper listens on.

Changing the protocol or port that a session helper listens on

Most session helpers are configured to listen for their sessions on the port and protocol that they typically use. If your FortiGate unit receives sessions that should be handled by a session helper on a non-standard port or protocol you can use the following procedure to change the port and protocol used by a session helper. The following example shows how to change the port that the pmap session helper listens on for Sun RPC portmapper TCP sessions. By default pmap listens on TCP port 111.

To change the port that the pmap session helper listens on to TCP port 112

1. Confirm that the TCP pmap session helper entry is 11 in the session-helper list:

   ```
 show system session-helper
 config system session-helper
 edit 11
 set name pmap
 set port 111
 set protocol 6
 next
 end
   ```

   The configuration for each session helper includes the name of the session helper and the port and protocol number on which the session helper listens for sessions. Session helpers listed on protocol number 6 (TCP) or 17 (UDP). For a complete list of protocol numbers see: Assigned Internet Protocol Numbers.

   For example, the output above shows that FortiOS listens for PPTP packets on TCP port 1723 and H.323 packets on port TCP port 1720.

   If a session helper listens on more than one port or protocol the more than one entry for the session helper appears in the `config system session-helper` list. For example, the pmap session helper appears twice because it listens on TCP port 111 and UDP port 111. The rsh session helper appears twice because it listens on TCP ports 514 and 512.
2 Enter the following command to change the TCP port to 112.

```
config system session-helper
 edit 11
 set port 112
end
```

3 The pmap session helper also listens on UDP port 111. Confirm that the UDP pmap session helper entry is 12 in the session-helper list:

```
show system session-helper 12
config system session-helper
 edit 12
 set name pmap
 set port 111
 set protocol 17
 next
end
```

4 Enter the following command to change the UDP port to 112.

```
config system session-helper
 edit 12
 set port 112
end
```

Use the following command to set the h323 session helper to listen for ports on the UDP protocol.

**To change the protocol that the h323 session helper listens on**

1 Confirm that the h323 session helper entry is 2 in the session-helper list:

```
show system session-helper 2
config system session-helper
 edit 2
 set name h323
 set port 1720
 set protocol 6
 next
end
```

2 Enter the following command to change the protocol to UDP.

```
config system session-helper
 edit 2
 set protocol 17
end
```

If a session helper listens on more than one port or protocol, then multiple entries for the session helper must be added to the session helper list, one for each port and protocol combination. For example, the rtsp session helper listens on TCP ports 554, 7070, and 8554 so there are three rtsp entries in the session-helper list. If your FortiGate unit receives rtsp packets on a different TCP port (for example, 6677) you can use the following command to configure the rtsp session helper to listen on TCP port 6677.
To configure a session helper to listen on a new port and protocol

```config
cfg system session-helper
 edit 0
 set name rtsp
 set port 6677
 set protocol 6
end
```

Disabling a session helper

In some cases you may need to disable a session helper. Disabling a session helper just means removing it from the session-helper list so that the session helper is not listening on a port. You can completely disable a session helper by deleting all of its entries from the session helper list. If there are multiple entries for a session helper on the list you can delete one of the entries to prevent the session helper from listening on that port.

To disable the mgcp session helper from listening on UDP port 2427

1. Enter the following command to find the mgcp session helper entry that listens on UDP port 2427:
   ```
 show system session-helper
 .
 .
 edit 19
 set name mgcp
 set port 2427
 set protocol 17
 next
 .
 .
   ```

2. Enter the following command to delete session-helper list entry number 19 to disable the mgcp session helper from listening on UDP port 2427:
   ```
 config system session-helper
 delete 19
   ```

By default the mgcp session helper listens on UDP ports 2427 and 2727. The previous procedure shows how to disable the mgcp protocol from listening on port 2427. The following procedure completely disables the mgcp session helper by also disabling it from listening on UDP port 2727.

To completely disable the mgcp session helper

1. Enter the following command to find the mgcp session helper entry that listens on UDP port 2727:
   ```
 show system session-helper
 .
 .
 edit 20
 set name mgcp
 set port 2727
 set protocol 17
   ```
2. Enter the following command to delete session-helper list entry number 20 to disable the mgcp session helper from listening on UDP port 2727:

```
config system session-helper
delete 20
```

DCE-RPC session helper (dcerpc)

Distributed Computing Environment Remote Procedure Call (DCE-RPC) provides a way for a program running on one host to call procedures in a program running on another host. DCE-RPC (also called MS RPC for Microsoft RPC) is similar to ONC-RPC. Because of the large number of RPC services, for example, MAPI, the transport address of an RPC service is dynamically negotiated based on the service program’s universal unique identifier (UUID). The Endpoint Mapper (EPM) binding protocol in FortiOS maps the specific UUID to a transport address.

To accept DCE-RPC sessions you must add a security policy with service set to any or to the DEC-RPC pre-defined service (which listens on TCP and UDP ports 135). The dcerpc session helper also listens on TCP and UDP ports 135.

The session allows FortiOS to handle DCE-RPC dynamic transport address negotiation and to ensure UUID-based security policy enforcement. You can define a security policy to permit all RPC requests or to permit by specific UUID number.

In addition, because a TCP segment in a DCE-RPC stream might be fragmented, it might not include an intact RPC PDU. This fragmentation occurs in the RPC layer; so FortiOS does not support parsing fragmented packets.

DNS session helpers (dns-tcp and dns-udp)

FortiOS includes two DNS session helpers, dns-tcp, a session helper for DNS over TCP, and dns-udp, a session helper for DNS over UDP. The DNS session helpers monitor DNS query and reply packets and close sessions if the DNS flag indicates the packet is a reply message.

To accept DNS sessions you must add a security policy with service set to any or to the DNS pre-defined service (which listens on TCP and UDP ports 53). The dns-udp session helper also listens on UDP port 53. By default the dns-tcp session helper is disabled. If needed you can use the following command to enable the dns-tcp session helper to listen for DNS sessions on TCP port 53:

```
config system session-helper
edit 0
 set name dns-tcp
 set port 53
 set protocol 6
end
```
File transfer protocol (FTP) session helper (ftp)

The FTP session helper monitors PORT, PASV and 227 commands and NATs the IP addresses and port numbers in the body of the FTP packets and opens ports on the FortiGate unit as required.

To accept FTP sessions you must add a security policy with service set to any or to the FTP, FTP_Put, and FTP_GET pre-defined services (which all listen on TCP port 21).

H.245 session helpers (h245I and h245O)

H.245 is a control channel protocol used for H.323 and other similar communication sessions. H.245 sessions transmit non-telephone signals. H.245 sessions carry information needed for multimedia communication, such as encryption, flow control jitter management and others.

FortiOS includes two H.245 sessions helpers, h245I which is for H.245 call in and h245O which is for H.245 call out sessions. There is no standard port for H.245. By default the H.245 sessions helpers are disabled. You can enable them as you would any other session helper. When you enable them, you should specify the port and protocol on which the FortiGate unit receives H.245 sessions.

H.323 and RAS session helpers (h323 and ras)

The H.323 session helper supports secure H.323 voice over IP (VoIP) sessions between terminal endpoints such as IP phones and multimedia devices. In H.323 VoIP networks, gatekeeper devices manage call registration, admission, and call status for VoIP calls. The FortiOS h323 session helper supports gatekeepers installed on two different networks or on the same network.

To accept H.323 sessions you must add a security policy with service set to any or to the H323 pre-defined service (which listens on TCP port numbers 1720 and 1503 and on UDP port number 1719). The h323 session helper listens on TCP port 1720.

The ras session helper is used with the h323 session helper for H.323 Registration, Admission, and Status (RAS) services. The ras session helper listens on UDP port 1719.

Alternate H.323 gatekeepers

The h323 session helper supports using H.323 alternate gatekeepers. All the H.323 end points must register with a gatekeeper through the Registration, Admission, and Status (RAS) protocol before they make calls. During the registration process, the primary gatekeeper sends Gatekeeper Confirm (GCF) and Registration Confirm (RCF) messages to the H.323 end points that contain the list of available alternate gatekeepers.

The alternate gatekeeper provides redundancy and scalability for the H.323 end points. If the primary gatekeeper fails the H.323 end points that have registered with that gatekeeper are automatically registered with the alternate gatekeeper. To use the H.323 alternate gatekeeper, you need to configure security policies that allow H.323 end points to reach the alternate gatekeeper.
**Media Gateway Controller Protocol (MGCP) session helper (mgcp)**

The Media Gateway Control Protocol (MGCP) is a text-based application layer protocol used for VoIP call setup and control. MGCP uses a master-slave call control architecture in which the media gateway controller uses a call agent to maintain call control intelligence, while the media gateways perform the instructions of the call agent.

To accept MGCP sessions you must add a security policy with service set to any or to the MGCP pre-defined service (which listens on UDP port numbers 2427 and 2727). The h323 session helper also listens on UDP port numbers 2427 and 2727.

The MGCP session helper does the following:

- VoIP signalling payload inspection. The payload of the incoming VoIP signalling packet is inspected and malformed packets are blocked.
- Signaling packet body inspection. The payload of the incoming MGCP signaling packet is inspected according to RFC 3435. Malformed packets are blocked.
- Stateful processing of MGCP sessions. State machines are invoked to process the parsed information. Any out-of-state or out-of-transaction packet is identified and properly handled.
- MGCP Network Address Translation (NAT). Embedded IP addresses and ports in packet bodies is properly translated based on current routing information and network topology, and is replaced with the translated IP address and port number, if necessary.
- Manages pinholes for VoIP traffic. To keep the VoIP network secure, the IP address and port information used for media or signalling is identified by the session helper, and pinholes are dynamically created and closed during call setup.

**ONC-RPC portmapper session helper (pmap)**

Open Network Computing Remote Procedure Call (ONC-RPC) is a widely deployed remote procedure call system. Also called Sun RPC, ONC-RPC allows a program running on one host to call a program running on another. The transport address of an ONC-RPC service is dynamically negotiated based on the service’s program number and version number. Several binding protocols are defined for mapping the RPC program number and version number to a transport address.

To accept ONC-RPC sessions you must add a security policy with service set to any or to the ONC-RPC pre-defined service (which listens on TCP and UDP port number 111). The RPC portmapper session helper (called pmap) handles the dynamic transport address negotiation mechanisms of ONC-RPC.

**PPTP session helper for PPTP traffic (pptp)**

The PPTP session help supports port address translation (PAT) for PPTP traffic. PPTP provides IP security at the Network Layer. PPTP consists of a control session and a data tunnel. The control session runs over TCP and helps in establishing and disconnecting the data tunnel. The data tunnel handles encapsulated Point-to-Point Protocol (PPP) packets carried over IP.

To accept PPTP sessions that pass through the FortiGate unit you must add a security policy with service set to any or to the PPTP pre-defined service (which listens on IP port 47 and TCP port 1723). The pptp session helper listens on TCP port 1723.
PPTP uses TCP port 1723 for control sessions and Generic Routing Encapsulation (GRE) (IP protocol 47) for tunneling the encapsulated PPP data. The GRE traffic carries no port number, making it difficult to distinguish between two clients with the same public IP address. PPTP uses the source IP address and the Call ID field in the GRE header to identify a tunnel. When multiple clients sharing the same IP address establish tunnels with the same PPTP server, they may get the same Call ID. The call ID value can be translated in both the control message and the data traffic, but only when the client is in a private network and the server is in a public network.

PPTP clients can either directly connect to the Internet or dial into a network access server to reach the Internet. A FortiGate unit that protects PPTP clients can translate the clients’ private IP addresses to a pool of public IP addresses using NAT port translation (NAT-PT). Because the GRE traffic carries no port number for address translation, the pptp session helper treats the Call ID field as a port number as a way of distinguishing multiple clients.

After the PPTP establishing a TCP connection with the PPTP server, the client sends a start control connection request message to establish a control connection. The server replies with a start control connection reply message. The client then sends a request to establish a call and sends an outgoing call request message. FortiOS assigns a Call ID (bytes 12-13 of the control message) that is unique to each PPTP tunnel. The server replies with an outgoing call reply message that carries its own Call ID in bytes 12-13 and the client’s call ID in bytes 14-15. The pptp session helper parses the control connection messages for the Call ID to identify the call to which a specific PPP packet belongs. The session helper also identifies an outgoing call request message using the control message type field (bytes 8-9) with the value 7. When the session helper receives this message, it parses the control message for the call ID field (bytes 12-13). FortiOS translates the call ID so that it is unique across multiple calls from the same translated client IP. After receiving outgoing call response message, the session helper holds this message and opens a port that accepts GRE traffic that the PPTP server sends. An outgoing call request message contains the following parts:

- The protocol used for the outgoing call request message (usually GRE)
- Source IP address (PPTP server IP)
- Destination IP address (translated client IP)
- Destination port number (translated client call ID)

The session helper identifies an outgoing call reply message using the control message type field (bytes 8-9) with the value 8. The session helper parses these control messages for the call ID field (bytes 12-13) and the client’s call ID (bytes 14-15). The session helper then uses the client’s call ID value to find the mapping created for the other direction, and then opens a pinhole to accept the GRE traffic that the client sends. An outgoing call reply message contains the following parts:

- Protocol used for the outgoing call reply message (usually GRE)
- Source IP address (PPTP client IP)
- Destination IP address (PPTP server IP)
- Destination port number (PPTP server Call ID)

Each port that the session opens creates a session for data traffic arriving in that direction. The session helper opens the following two data sessions for each tunnel:

- Traffic from the PPTP client to the server, using the server’s call ID as the destination port
- Traffic from the PPTP server to the client, using the client’s translated call ID as the destination port
The default timeout value of the control connection is 30 minutes. The session helper closes the pinhole when the data session exceeds the timeout value or is idle for an extended period.

**Remote shell session helper (rsh)**

Using the remote shell program (RSH), authenticated users can run shell commands on remote hosts. RSH sessions most often use TCP port 514. To accept RSH sessions you must add a security policy with service set to any or to the RSH pre-defined service (which listens on TCP port number 514).

FortiOS automatically invokes the rsh session helper to process all RSH sessions on TCP port 514. The rsh session helper opens ports required for the RSH service to operate through a FortiGate unit running NAT or transparent and supports port translation of RSH traffic.

**Real-Time Streaming Protocol (RTSP) session helper (rtsp)**

The Real-Time Streaming Protocol (RTSP) is an application layer protocol often used by SIP to control the delivery of multiple synchronized multimedia streams, for example, related audio and video streams. Although RTSP is capable of delivering the data streams itself it is usually used like a network remote control for multimedia servers. The protocol is intended for selecting delivery channels (like UDP, multicast UDP, and TCP) and for selecting a delivery mechanism based on the Real-Time Protocol (RTP). RTSP may also use the SIP Session Description Protocol (SDP) as a means of providing information to clients for aggregate control of a presentation consisting of streams from one or more servers, and non-aggregate control of a presentation consisting of multiple streams from a single server.

To accept RTSP sessions you must add a security policy with service set to any or to the RTSP pre-defined service (which listens on TCP ports 554, 770, and 8554 and on UDP port 554). The rtsp session helper listens on TCP ports 554, 770, and 8554.

The rtsp session helper is required because RTSP uses dynamically assigned port numbers that are communicated in the packet body when end points establish a control connection. The session helper keeps track of the port numbers and opens pinholes as required. In Network Address Translation (NAT) mode, the session helper translates IP addresses and port numbers as necessary.

In a typical RTSP session the client starts the session (for example, when the user selects the Play button on a media player application) and establishes a TCP connection to the RTSP server on port 554. The client then sends an OPTIONS message to find out what audio and video features the server supports. The server responds to the OPTIONS message by specifying the name and version of the server, and a session identifier, for example, 24256-1.

The client then sends the DESCRIBE message with the URL of the actual media file the client wants to play. The server responds to the DESCRIBE message with a description of the media in the form of SDP code. The client then sends the SETUP message, which specifies the transport mechanisms acceptable to the client for streamed media, for example RTP/RTCP or RDT, and the ports on which it receives the media.

In a NAT configuration the rtsp session helper keeps track of these ports and addresses translates them as necessary. The server responds to the SETUP message and selects one of the transport protocols. When both client and server agree on a mechanism for media transport the client sends the PLAY message, and the server begins streaming the media.
Session Initiation Protocol (SIP) session helper (sip)

The sip session helper is described in *VoIP Solutions: SIP Guide*.

Trivial File Transfer Protocol (TFTP) session helper (tftp)

To accept TFTP sessions you must add a security policy with service set to any or to the TFTP pre-defined service (which listens on UDP port number 69). The TFTP session helper also listens on UTP port number 69.

TFTP initiates transfers on UDP port 69, but the actual data transfer ports are selected by the server and client during initialization of the connection. The tftp session helper reads the transfer ports selected by the TFTP client and server during negotiation and opens these ports on the firewall so that the TFTP data transfer can be completed. When the transfer is complete the tftp session helper closes the open ports.

Oracle TNS listener session helper (tns)

The Oracle Transparent Network Substrate (TNS) listener listens on port TCP port 1521 for network requests to be passed to a database instance. The Oracle TNS listener session helper (tns) listens for TNS sessions on TCP port 1521. TNS is a foundation technology built into the Oracle Net foundation layer and used by SQLNET.
Advanced concepts

This chapter provides configuration concepts and techniques to enhance your network security.

This section includes the topics:

- Dual internet connections
- Advanced concepts Single firewall vs. multiple virtual domains
- Modem
- DHCP servers and relays
- Assigning IP address by MAC address
- DNS services
- Dynamic DNS
- Aggregate Interfaces
- IP addresses for self-originated traffic
- Administration for schools
- Tag management
- Software switch
- Replacement messages list
- Disk
- CLI Scripts
- Rejecting PING requests
- Opening TCP 113
- Obfuscate HTTP headers

Dual internet connections

Dual internet connection, dual WAN, or redundant internet connection refers to using two FortiGate interfaces to connect to the Internet. Dual internet connections can be used in three ways:

- redundant interfaces, should one interface go down, the second automatically becomes the main internet connection
- for load sharing to ensure better throughput.
- a combination of redundancy and load sharing.

Redundant interfaces

Redundant interfaces, ensures that should your internet access be no longer available through a certain port, the FortiGate unit will use an alternate port to connect to the Internet.
In this scenario, two interfaces, WAN1 and WAN2 are connected to the Internet using two different ISPs. WAN1 is the primary connection. In an event of a failure of WAN1, WAN2 automatically becomes the connection to the Internet. For this configuration to function correctly, you need to configure three specific settings:

- configure a ping server to determine when the primary interface (WAN1) is down and when the connection returns
- configure a default route for each interface.
- configure security policies to allow traffic through each interface to the internal network.

### Ping server

Adding a ping server is required for routing fail over traffic. A ping server will confirm the connectivity of the device’s interface.

**To add a ping server - web-based manager**

1. Go to `Router > Static > Settings` and select `Create New`.
2. Select the `Interface` that will send ping requests.
3. For the `Ping Server` field, enter the IP address of a server that the FortiGate unit will send ping requests to. This is typically a next hop router or gateway device.
4. Select the `Detect Protocol` type.
5. For the `Ping Interval` field, enter the number of seconds to send ping requests.
6. For the `Failover Threshold`, enter the number of lost pings is acceptable before the port is determined to be down.
7. Select `OK`.

---

**Figure 24: Configuring redundant interfaces**

![Diagram of dual internet connections with two interfaces, WAN1 and WAN2, connected to the Internet through two different ISPs. WAN1 is the primary connection, and WAN2 becomes the connection in event of failure. Diagram includes a ping server, default routes, and security policies configured to ensure traffic can flow through each interface to the internal network.](http://docs.fortinet.com/)
To add a ping server - CLI

```bash
config router gwdetect
edit wan1
 set server <ISP_IP_address>
 set failtime <failure_count>
 set interval <seconds>
end
```

Routing

You need to configure a default route for each interface and indicate which route is preferred by specifying the distance. The lower distance is declared active and placed higher in the routing table.

When you have dual WAN interfaces that are configured to provide fail over, you might not be able to connect to the backup WAN interface because the FortiGate unit may not route traffic (even responses) out of the backup interface. The FortiGate unit performs a reverse path lookup to prevent spoofed traffic. If no entry can be found in the routing table which sends the return traffic out the same interface, then the incoming traffic is dropped.

To configure the routing of the two interfaces - web-based manager

1. Go to Router > Static > Static Route and select Create New.
2. Set the Destination IP/Mask to the address and netmask to 0.0.0.0/0.0.0.0.
3. Select the Device to the primary connection, WAN1.
4. Enter the Gateway address.
5. Select Advanced.
6. Set the Distance to 10.
7. Select OK.
8. Repeat steps 1 through 7 setting the Device to WAN2 and a Distance of 20.

To configure the routing of the two interfaces - CLI

```bash
config router static
edit 1
 set dst 0.0.0.0 0.0.0.0
 set device WAN1
 set gateway 0.0.0.0 0.0.0.0
 set distance 10
next
edit 1
 set dst <ISP_Address>
 set device WAN2
 set gateway <gateway_address>
 set distance 20
next
end
```
Security policies

When creating security policies, you need to configure duplicate policies to ensure that after traffic fails over WAN1, regular traffic will be allowed to pass through WAN2 as it did with WAN1. This ensures that fail-over will occur with minimal affect to users. For more information on creating security policies see the Firewall Guide.

Load sharing

Load sharing enables you to use both connections to the internet at the same time, but do not provide fail over support. When configuring for load sharing, you need to ensure routing is configured for both external ports, for example, WAN1 and WAN2, have static routes with the same distance and priority.

Further configuration can be done using Equal Cost Multiple Path (ECMP). For more information on ECMP and load sharing, see the Advanced Routing Guide.

Link redundancy and load sharing

In this scenario, both links are available to distribute Internet traffic over both links. Should one of the interfaces fail, the FortiGate unit will continue to send traffic over the other active interface. Configuration is similar to the Redundant Interfaces configuration, with the main difference being that the configured routes should have equal distance settings.

This means both routes will remain active in the routing table. To make one interface the preferred interface, use a default policy route to indicate the interface that is preferred for accessing the Internet. If traffic matches the security policy, the policy overrides all entries in the routing table, including connected routes. You may need to add a specific policy routes that override these default policy routes.

To redirect traffic over the secondary interface, create policy routes to direct some traffic onto it rather than the primary interface. When adding the policy route, only define the outgoing interface and leave the gateway blank. This ensures that the policy route will not be active when the link is down.

Single firewall vs. multiple virtual domains

A typical FortiGate setup, with a small to mid-range appliance, enables you to include a number of subnets on your network using the available ports and switch interfaces. This can potentially provide a means of having three or more mini networks for the various groups in a company. Within this infrastructure, multiple network administrators have access to the FortiGate to maintain security policies.

However, the FortiGate unit may not have enough interfaces to match the number of departments in the organization. If the FortiGate unit it running in transparent mode however, there is only one interface, and multiple network branches through the FortiGate are not possible.

A FortiGate unit with Virtual Domains (VDOMs) enabled, provides a means to provide the same functionality in transparent mode as a FortiGate in NAT mode. VDOMs are a method of dividing a FortiGate unit into two or more virtual units that function as multiple independent units. VDOMs can provide separate security policies and, in NAT mode, completely separate configurations for routing and VPN services for each connected network. For administration, an administrator can be assigned to each VDOM, minimizing the possibility of error or fouling network communications.
By default, your FortiGate unit supports a maximum of 10 VDOMs. For FortiGate models 3000 and higher, you can purchase a license key to increase the number of VDOMs to 25, 50, 100 or 250.

The FortiGate-20C and 30B and FortiWifi-20C and 30B do not support VDOMs.

**Single firewall vs. vdoms**

When VDOMs are not enabled, and the FortiGate unit is in transparent mode, all the interfaces on your unit become broadcast interfaces. The problem is there are no interfaces free for additional network segments.

A FortiGate with three interfaces means only limited network segments are possible without purchasing more FortiGate devices.
With multiple VDOMs you can have one of them configured in transparent mode, and the rest in NAT mode. In this configuration, you have an available transparent mode FortiGate unit you can drop into your network for troubleshooting, and you also have the standard. This example shows how to enable VDOMs on the FortiGate unit and the basic and create a VDOM accounting on the DMZ2 port and assign an administrator to maintain the VDOM. First enable Virtual Domains on the FortiGate unit.

**To enable VDOMs - web-based manager**

1. Go to System > Dashboard > Status.
2. In the System Information widget, select Enable for Virtual Domain.

The FortiGate unit logs you out. Once you log back in, you will notice that the menu structure has changed. This reflects the global settings for all Virtual Domains.

**To enable VDOMs - CLI**

```
config system global
 set vdom-admin enable
end
```

Next, add the VDOM called accounting.

**To add a VDOM - web-based manager**

1. Go to System > VDOM > VDOM, and select Create New.
2. Enter the VDOM name accounting.
3. Select OK.

**To add a VDOM - CLI**

```
config vdom
 edit <new_vdom_name>
end
```

With the Virtual Domain created, you can assign a physical interface to it, and assign it an IP address.
To assign physical interface to the accounting Virtual Domain - web-based manager

1. Go to System > Network > Interface.
2. Select the DMZ2 port row and select Edit.
3. For the Virtual Domain drop-down list, select accounting.
5. Enter the IP address for the port of 10.13.101.100/24.
6. Set the Administrative Access to HTTPS and SSH.
7. Select OK.

To assign physical interface to the accounting Virtual Domain - CLI

```
config global
 config system interface
 edit dmz2
 set vdom accounting
 set ip 10.13.101.100/24
 set allowaccess https ssh
 next
 end
```

Modem

FortiGate units support the use of wireless, 3G and 4G modems connected using the USB port or, if available, the express card slot. Modem access provides either primary or secondary (redundant) access to the Internet. For FortiGate units that do not include an internal modem (those units with an “M” designation), the modem interface will not appear in the web-based manager until enabled in the CLI. To enable the modem interface enter the CLI commands:

```
config system modem
 set status enable
end
```

Once enabled, modem options become available by going to System > Network > Interface.

The modem interface is only available when the FortiGate unit is in NAT mode.

Configuring the modem settings is a matter of entering the ISP phone number, user name and password. Depending on the modem, additional information may need to be supplied such as product identifiers, and initialization strings.

The FortiGate unit includes a number of common modems within its internal database. You can view these by selecting the Configure Modem link on the Modem Settings page. If your modem is not on the list, select Create New to add the information. This information is stored on the device, and will remain after a reboot.

Fortinet has an online database of modem models and configuration settings through FortiGuard. A subscription to the FortiGuard services is not required to access the information. As models are added, you can select the Configure Modem link and select Update Now to download new configurations.
USB modem port

Each USB modem has a specific dial-out ttyusb port. This will be indicated with the documentation for your modem. To enable the correct USB port, use the CLI commands:

```bash
config system modem
set wireless-port {ttyusb0 | ttyusb1 | ttyusb2}
end
```

To test the port, use the diagnose command:

```bash
diagnose sys modem com /ttyusb1
```

The ttyusb1 will be the value of your USB port selected. The response will be:

```
Serial port: /dev/ttyusb1
Press Ctrl+W to exit.
```

If the port does not respond the output will be:

```
Can not open modem device ‘/dev/ttyusb1’ : Broken pipe
```

Modes

The FortiGate unit allows for two modes of operation for the modem; stand alone and redundant. In stand alone mode, the modem connects to a dialup ISP account to provide the connection to the Internet. In redundant mode, the modem acts as a backup method of connecting to the Internet, should the primary port for this function fails.

Configuring either stand alone or redundant modes are very similar. The primary difference is the selection of the interface that the modem will replace in the event of it failing, and the configuration of a PING server to monitor the chosen interface.

Configuring stand alone mode

Configuring stand alone mode is a matter of configuring the modem information and the dialing mode. The dial mode is either Always Connect or Dial on Demand. Selecting Always Connect ensures that once the modem has connected, it remains connected to the ISP. Selecting Dial on Demand, the modem only calls the ISP if packets are routed to the modem interface. Once sent, the modem will disconnect after a specified amount of time.

To configure standalone mode as needed - web-based manager

1. Go to System > Network > Modem.
2. Select the Mode of Standalone.
3. Select the Dial Mode of Dial on Demand.
4. Enter the Idle Timeout of 2 minutes.
5. Select the number of redials the modem attempts if connection fails to 5.
6. Select Apply.

To configure standalone mode as needed- CLI

```bash
config system modem
set mode standalone
set auto-dial enable
set idle-timer 2
set redial 5
end
```
Configuring redundant mode

Redundant mode provides a backup to an interface, typically to the Internet. If that interface fails or disconnects, the modem automatically dials the configured phone number(s). Once connected, the FortiGate unit routes all traffic to the modem interface until the monitored interface is up again. The FortiGate unit pings the connection to determine when it is back online.

For the FortiGate to verify when the interface is back up, you need to configure a Ping server for that interface. You will also need to configure security policies between the modem interface and the other interfaces of the FortiGate unit to ensure traffic flow.

To configure redundant mode as needed - web-based manager

1. Go to System > Network > Modem.
2. Select the Mode of Redundant.
3. Select the interface the modem takes over from if it fails.
4. Select the Dial Mode of Dial on Demand.
5. Enter the Idle Timeout of 2 minutes.
6. Select the number of redials the modem attempts if connection fails to 5.
7. Select Apply.

To configure standalone mode as needed - CLI

```
config system modem
 set mode redundant
 set interface wan1
 set auto-dial enable
 set idle-timer 2
 set redial 5
end
```

Ping server

Adding a ping server is required for routing fail over traffic. A ping server will confirm the connectivity of the device’s interface. You can only configure the ping server in the CLI.

To add a ping server - CLI

```
config router gwdetect
 edit wan1
 set server <ISP_IP_address>
 set failtime <failure_count>
 set interval <seconds>
end
```

Additional modem configuration

The CLI provides additional configuration options when setting up the modem options including adding multiple ISP dialing and initialization options and routing. For more information, see the CLI Reference.
Modem interface routing

The modem interface can be used in FortiOS as a dedicated interface. Once enabled and configured, you can use it in security policies and define static and dynamic routing. Within the CLI commands for the modem, you can configure the distance and priority of routes involving the modem interface. The CLI commands are:

```
config syssetm modem
 set distance <route_distance>
 set priority <priority_value>
end
```

For more information on the routing configuration in the CLI, see the CLI Reference. For more information on routing and configuring routing, see the Advanced Routing Guide.

DHCP servers and relays

A DHCP server provides an address to a client on the network, when requested, from a defined address range.

DHCP server options are not available in transparent mode.

An interface cannot provide both a server and a relay for connections of the same type (regular or IPSec). However, you can configure a Regular DHCP server on an interface only if the interface is a physical interface with a static IP address. You can configure an IPSec DHCP server on an interface that has either a static or a dynamic IP address.

You can configure one or more DHCP servers on any FortiGate interface. A DHCP server dynamically assigns IP addresses to hosts on the network connected to the interface. The host computers must be configured to obtain their IP addresses using DHCP.

If an interface is connected to multiple networks via routers, you can add a DHCP server for each network. The IP range of each DHCP server must match the network address range. The routers must be configured for DHCP relay.

You can configure a FortiGate interface as a DHCP relay. The interface forwards DHCP requests from DHCP clients to an external DHCP server and returns the responses to the DHCP clients. The DHCP server must have appropriate routing so that its response packets to the DHCP clients arrive at the unit.

DHCP Server configuration

To add a DHCP server, go to System > Network > DHCP Server, select Create New and complete the following:

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Select an interface from the drop-down list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Select the type of DHCP server.</td>
</tr>
<tr>
<td>Enable</td>
<td>Select to enable the DHCP server.</td>
</tr>
<tr>
<td>Type</td>
<td>Select the type of DHCP server. You cannot configure a regular DHCP server on an interface that has a dynamic IP address.</td>
</tr>
<tr>
<td>DHCP Server IP</td>
<td>Enter the IP address for the relay DHCP server. This appears only when Mode is Relay.</td>
</tr>
<tr>
<td><strong>IP Range</strong></td>
<td>Enter the start and end for the range of IP addresses that this DHCP server assigns to DHCP clients.</td>
</tr>
<tr>
<td><strong>Network Mask</strong></td>
<td>Enter the netmask of the addresses that the DHCP server assigns.</td>
</tr>
<tr>
<td><strong>Default Gateway</strong></td>
<td>Enter the IP address of the default gateway that the DHCP server assigns to DHCP clients.</td>
</tr>
<tr>
<td><strong>DNS Service</strong></td>
<td>Select to use either a specific DNS server or the system’s DNS settings. You can add multiple DNS servers by selecting the plus sign (+) beside DNS Server 1. For more information see DNS services and DNS server.</td>
</tr>
<tr>
<td><strong>DNS Server 0</strong></td>
<td>Enter the DNS server.</td>
</tr>
<tr>
<td><strong>DNS Server 1</strong></td>
<td>Enter the second DNS server. If you need to add more DNS servers, select the plus sign (+).</td>
</tr>
<tr>
<td><strong>IP Reservation</strong></td>
<td>Select to match an IP address from the DHCP server to a specific client or device using its MAC address. In a typical situation, an IP address is assigned ad hoc to a client, and that assignment times out after a specific time of inactivity from the client, known as the lease time. To ensure a client or device always has the same IP address, that is, there is no lease time, use IP reservation.</td>
</tr>
<tr>
<td><strong>Add from DHCP Client List</strong></td>
<td>If the client is currently connected and using an IP address from the DHCP server, you can select this option to select the client from the list.</td>
</tr>
</tbody>
</table>

**Advanced section of the New DHCP Service page**

| **Domain** | Enter the domain that the DHCP server assigns to clients. |
| **Lease Time** | Set the length of time an IP address remains assigned to a client. Once the lease expires, the address is released for allocation to the next client request for an IP address. To set the lease to never expire, select Unlimited. |

**IP Assignment Mode**

Configure how the IP addresses for an IPSec DHCP server are assigned to dialup IPSec VPN users. These options are available when the DHCP server type is IPsec. Select:

- **Server IP Range** - The IPSec DHCP server will assign the IP addresses as specified in IP Range, and Exclude Ranges.
- **User-group defined method** - The IP addresses will be assigned by a user group used to authenticate the user. The user group is used to authenticate XAUTH users.

When User-group defined method is selected, the IP Range fields are greyed out, and the Exclude Ranges table and controls are not visible.

| **WINS Server 0** | Add the IP addresses of one or two WINS servers that the DHCP server assigns to DHCP clients. |
| **WINS Server 1** | Add the IP addresses of one or two WINS servers that the DHCP server assigns to DHCP clients. |
When adding a DHCP server, you have the ability to include DHCP codes and options. The DHCP options are BOOTP vendor information fields that provide additional vendor-independent configuration parameters to manage the DHCP server. For example, you may need to configure a FortiGate DHCP server that gives out a separate option as well as an IP address. For example, an environment that needs to support PXE boot with Windows images. The option numbers and codes are specific to the particular application. The documentation for the application will indicate the values to use. Option codes are represented in a option value/HEX value pairs. The option is a value 1 and 255. You can add up to three DHCP code/option pairs per server.

### Options

**Excluding Ranges**

Enter a range of IP addresses from the IP range that should not be assigned. This option is only available when the DHCP type is IPsec, and the IP Assignment Mode is Server IP range.

### Service

On FortiGate-50 and FortiGate-60 series units, a DHCP server is configured, by default on the Internal interface:

<table>
<thead>
<tr>
<th>IP Range</th>
<th>192.168.1.110 to 192.168.1.210</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netmask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Default gateway</td>
<td>192.168.1.99</td>
</tr>
<tr>
<td>Lease time</td>
<td>7 days</td>
</tr>
<tr>
<td>DNS Server 1</td>
<td>192.168.1.99</td>
</tr>
</tbody>
</table>

These settings are appropriate for the default Internal interface IP address of 192.168.1.99. If you change this address to a different network, you need to change the DHCP server settings to match.

### Reserving IP addresses for specific clients

Within the DHCP pool of addresses, you can ensure certain computers will always have the same address. This can be to ensure certain users always have an IP address when connecting to the network, or if you want a device that connects occasionally to have the same address for monitoring its activity or use.

In the example below, the IP address 172.20.120.129 will be matched to MAC address 00:1f:5c:b8:03:57. This configuration is now only available in the CLI.

#### To configure IP reservation - CLI

```conf
config system dhcp reserved-address
edit 1
 set ip 172.20.120.129
 set mac 00:1f:5c:b8:03:57
end
```
Alternatively, after the FortiGate unit assigns an address, you can go to System > Monitor > DHCP Monitor, locate the particular user. Select the check box for the user and select Add to Reserved.

**DHCP options**

When adding a DHCP server, you have the ability to include DHCP codes and options. The DHCP options are BOOTP vendor information fields that provide additional vendor-independent configuration parameters to manage the DHCP server. For example, you may need to configure a FortiGate DHCP server that gives out a separate option as well as an IP address. For example, an environment that needs to support PXE boot with Windows images.

The option numbers and codes are specific to the particular application. The documentation for the application will indicate the values to use. Option codes are represented in a option value/HEX value pairs. The option is a value 1 and 255. You can add up to three DHCP code/option pairs per DHCP server.

**To configure option 252 with value http://192.168.1.1/wpad.dat - web-based manager**

1. Go to System > Network > DHCP Server and select Create New.
2. Select a Mode of Server.
3. Select the blue arrow to expand the Advanced options.
4. Select Options.
5. Enter a Code of 252.
6. Enter the Options of 687474703a2f2f31393322e3136382e312e312f777061642e646174.

In the CLI, use the commands:

```
config system dhcp server
edit <server_entry_number>
set option1 252
687474703a2f2f31393322e3136382e312e312f777061642e646174
der
```

For detailed information about DHCP options, see RFC 2132, DHCP Options and BOOTP Vendor Extensions.

**DHCP Monitor**

To view information about DHCP server connections, go to System > Monitor > DHCP Monitor. On this page, you can also add IP address to the reserved IP address list.

**Assigning IP address by MAC address**

To prevent users in the from changing their IP addresses and causing IP address conflicts or unauthorized use of IP addresses, you can bind an IP address to a specific MAC address using DHCP.

Use the CLI to reserve an IP address for a particular client identified by its device MAC address and type of connection. The DHCP server then always assigns the reserved IP address to the client. The number of reserved addresses that you can define ranges from 10 to 200 depending on the FortiGate model.
In the example below, the IP address 10.10.10.55 for User1 is assigned to MAC address 00:09:0F:30:CA:4F.

To assign an IP address to a specific MAC address

```
config system dhcp reserved-address
edit User1
 set ip 10.10.10.55
 set mac 00:09:0F:30:CA:4F
 set type regular
end
```

DNS services

A DNS server is a public service that converts symbolic node names to IP addresses. A Domain Name System (DNS) server implements the protocol. In simple terms, it acts as a phone book for the Internet. A DNS server matches domain names with the computer IP address. This enables you to use readable locations, such as fortinet.com when browsing the Internet. FortiOS supports DNS configuration for both IPv4 and IPv6 addressing.

The FortiGate unit includes default DNS server addresses. However, these should be changed to those provided by your Internet Service Provider. The defaults are DNS proxies and are not as reliable as those from your ISP.

Within FortiOS, there are two DNS configuration options; each provide a specific service, and can work together to provide a complete DNS solution.

DNS queries

Basic DNS queries are configured on interfaces that connect to the Internet. When a web site is requested, for example, the FortiGate unit will look to the configured DNS servers to provide the IP address to know which server to contact to complete the transaction.

DNS server addresses are configured by going to System > Network > DNS. Here you specify the DNS server addresses. Typically, these addresses are supplied by your ISP. An additional option is available if you have local Microsoft domains on the network, by entering a domain name in the Local Domain Name field.

In a situation where all three fields are configured, the FortiGate unit will first look to the local domain. If no match is found, a request is sent to the external DNS servers.

If virtual domains are enabled, you create a DNS database in each VDOM. All of the interfaces in a VDOM share the DNS database in that VDOM.

Additional DNS CLI configuration

Further options are available from the CLI with the command `config system dns`. Within this command you can set the following commands:

- `dns-cache-limit` - enables you to set how many DNS entries are stored in the cache. Entries that remain in the cache provide a quicker response to requests than going out to the Internet to get the same information.
- `dns-cache-ttl` - enables you to set how long entries remain in the cache in seconds, between 60 and 86,400 (24 hours).
- `cache-notfound-responses` - when enabled, any DNS requests that are returned with NOTFOUND can be stored in the cache.
- `source-ip` - enables you to define a dedicated IP address for communications with the DNS server.
DNS server

You can also create local DNS servers for your network. Depending on your requirements, you can manually maintain your entries (master DNS server), or use it as a jumping point, where the server refers to an outside source (slave DNS server). A local master DNS server works similarly to the DNS server addresses configured in System > Network > DNS, but all entries must be added manually. This enables you to add a local DNS server to include specific URL/IP address combinations.

The DNS server options are not visible in the web-based manager by default. To enable the server, go to System > Admin > Settings and select DNS Database.

While a master DNS server is an easy method of including regularly used addresses to save on going to an outside DNS server, it is not recommended to make it the authoritative DNS server. IP addresses may change, and maintaining any type of list can quickly become labor-intensive.

A FortiGate master DNS server is best set for local services. For example, if your company has a web server on the DMZ that is accessed by internal employees as well as external users, such as customers or remote users. In this situation, the internal users when accessing the site would send a request for website.example.com, that would go out to the DNS server on the web, to return an IP address or virtual IP. With an internal DNS, the same site request is resolved internally to the internal web server IP address, minimizing inbound/outbound traffic and access time.

As a slave, DNS server, the FortiGate server refers to an external or alternate source as way to obtain the url/IP combination. This useful if there is a master DNS server for a large company where a list is maintained. Satellite offices can then connect to the master DNS server to obtain the correct addressing.

The DNS server entries does not allow CNAME entries, as per rfc 1912, section 2.4.

To configure a master DNS server - web-based manager

1. Go to System > Network > DNS Server, and select Create New.
2. Select the Type of Master.
3. Select the View as Shadow.
   The view is the accessibility of the DNS server. Selecting Public, external users can access, or use, the DNS server. Selecting Shadow, only internal users can use it.
4. Enter the DNS Zone, for example, WebServer.
5. Enter the domain name for the zone, for example example.com.
6. Enter the hostname of the DNS server, for example, Corporate.
7. Enter the contact address for the administrator, for example, admin@example.com.
8. Set Authoritative to Disable.
9. Select OK.
10. Enter the DNS entries for the server by selecting Create New.
11. Select the Type, for example, Address (A).
12. Enter the Hostname, for example web.example.com.
13 Enter the remaining information, which varies depending on the Type selected.
14 Select OK.

To configure a DNS server - CLI

```
config system dns-database
 edit WebServer
 set domain example.com
 set type master
 set view shadow
 set ttl 86400
 set primary-name corporate
 set contact admin@example.com
 set authoritative disable
 config dns-entry
 edit 1
 set hostname web.example.com
 set type A
 set ip 192.168.21.12
 set status enable
 end
end
```

**Recursive DNS**

You can set an option to ensure these types of DNS server is not the authoritative server. When configured, the FortiGate unit will check its internal DNS server (Master or Slave). If the request cannot be fulfilled, it will look to the external DNS servers. This is known as a split DNS configuration.

You can also have the FortiGate unit look to an internal server should the Master or Slave not fulfill the request by using the CLI commands:

```
config system dns-database
 edit example.com
...
 set view shadow
end
```

For this behavior to work completely, for the external port, you must set the DNS query for the external interface to be recursive. This option is configured in the CLI only.

**To set the DNS query**

```
config system dns-server
 edit wan1
 set mode recursive
end
```

**Dynamic DNS**

If your ISP changes the your external IP address on a regular basis, and you have a static domain name, you can configure the external interface to use a dynamic DNS service to ensure external users and/or customers can always connect to your company firewall.

To configure dynamic DNS in the web-based manager, go to System > Network > DNS, select Use DDNS, and enter the relevant information for the interface communicating to the server, and which server to use, and relevant information.
To configure dynamic DNS in the CLI use the commands below. Within the CLI you can configure a DDNS for each interface. Only the first configured port appears in the web-based manager. Additional commands vary with the DDNS server you select.

```
config system ddns
edit <instance_value>
 set monitor-interface <external_interface>
 set ddns-server <ddns_server_selection>
end
```

### Aggregate Interfaces

Link aggregation (IEEE 802.3ad) enables you to bind two or more physical interfaces together to form an aggregated (combined) link. This new link has the bandwidth of all the links combined. If a link in the group fails, traffic is transferred automatically to the remaining interfaces with the only noticeable effect being a reduced bandwidth.

This is similar to redundant interfaces with the major difference being that a redundant interface group only uses one link at a time, where an aggregate link group uses the total bandwidth of the functioning links in the group, up to eight.

Support of the IEEE standard 802.3ad for link aggregation is available on some models.

An interface is available to be an aggregate interface if:

- it is a physical interface, not a VLAN interface or subinterface
- it is not already part of an aggregate or redundant interface
- it is in the same VDOM as the aggregated interface. Aggregate ports cannot span multiple VDOMs.
- it does not have an IP address and is not configured for DHCP or PPPoE
- it is not referenced in any security policy, VIP, IP Pool or multicast policy
- it is not an HA heartbeat interface
- it is not one of the FortiGate-5000 series backplane interfaces

Some models of FortiGate units do not support aggregate interfaces. In this case, the aggregate option is not an option in the web-based manager or CLI. As well, you cannot create aggregate interfaces from the interfaces in a switch port.

To see if a port is being used or has other dependencies, use the following diagnose command:

```
diagnose sys checkused system.interface.name <interface_name>
```

When an interface is included in an aggregate interface, it is not listed on the System > Network > Interface page. Interfaces will still appear in the CLI, although configuration for those interfaces will not take affect. You cannot configure the interface individually and it is not available for inclusion in security policies, VIPs, IP pools, or routing.

### Example

This example creates an aggregate interface on a FortiGate-3810A using ports 4-6 with an internal IP address of 10.13.101.100, as well as the administrative access to HTTPS and SSH.

**To create an aggregate interface - web-based manager**

1. Go to System > Network > Interface and select Create New.
2. Enter the Name as Aggregate.
3 For the Type, select 802.3ad Aggregate.
   If this option does not appear, your FortiGate unit does not support aggregate interfaces.
4 In the Available Interfaces list, select port 4, 5 and 6 and move it to the Selected Interfaces list.
5 Select the Addressing Mode of Manual.
6 Enter the IP address for the port of 10.13.101.100/24.
7 For Administrative Access select HTTPS and SSH.
8 Select OK.

To create aggregate interface - CLI

```
config system interface
edit Aggregate
 set type aggregate
 set member port4 port5 port6
 set vdom root
 set ip 172.20.120.100/24
 set allowaccess https ssh
end
```

IP addresses for self-originated traffic

On the FortiGate unit, there are a number of protocols and traffic that is specific to the internal workings of FortiOS. For many of these traffic sources, you can identify a specific port/IP address for this self-originating traffic. The following traffic can be configured to a specific port/IP address:

- SNMP
- Syslog
- alert email
- FortiManager connection IP
- FortiGuard services
- FortiAnalyzer logging
- NTP
- DNS
- Authorization requests such as RADIUS
- FSAE

Configuration of these services is performed in the CLI. In each instance, there is a command `set source-ip`. For example, to set the source IP of NTP to be on the DMZ1 port with an IP of 192.168.4.5, the commands are:

```
config system ntp
 set ntpsyn enable
 set syncinterval 5
 set source-ip 192.168.4.5
end
```

To see which services are configured with source-ip settings, use the get command:

```
get system source-ip status
```
The output will appear similar to the sample below:

NTP: x.x.x.x
DNS: x.x.x.x
SNMP: x.x.x.x
Central Management: x.x.x.x
FortiGuard Updates (AV/IPS): x.x.x.x
FortiGuard Queries (WebFilter/SpamFilter): x.x.x.x

Administration for schools

For system administrator in the school system it is particularly difficult to maintain a network and access to the Internet. There are potential legal liabilities if content is not properly filtered and children are allowed to view pornography and other non-productive and potentially dangerous content. For a school, too much filtering is better than too little. This section describes some basic practices administrators can employ to help maintain control without being too draconian for access to the internet.

Security policies

The default security policies in FortiOS allow all traffic on all ports and all IP addresses. Not the most secure. While applying UTM profiles can help to block viruses, detect attacks and prevent spam, this doesn’t provide a solid overall security option. The best approach is a layered approach; the first layer being the security policy.

When creating outbound security policies, you need to know the answer to the question “What are the students allowed to do?” The answer is surf the web, connect to FTP sites, send/receive email, and so on.

Once you know what the students need to do, you can research the software used and determine the ports the applications use. For example, if the students only require web surfing, then there are only two ports (80 - HTTP and 443 - HTTPS) needed to complete their tasks. Setting the security policies to only allow traffic through two ports (rather than all 65,000), this will significantly lower any possible exploits. By restricting the ports to known services, means stopping the use of proxy servers, as many of them operate on a non-standard port to hide their traffic from URL filtering or HTTP inspection.

DNS

Students should not be allowed to use whatever DNS they want. This opens another port for them to use and potentially smuggle traffic on. The best approach is to point to an internal DNS server and only allow those devices out on port 53. Its the same approach one would use for SMTP. Only allow the mail server to use port 25 since nothing else should be sending email.

If there is no internal DNS server, then the list of allowed DNS servers they can use should be restrictive. One possible exploit would be for them to set up their own DNS server at home that serves different IPs for known hosts, such as having Google.com sent back the IP for playboy.com.

Encrypted traffic (HTTPS)

Generally speaking, students should not be allowed to access encrypted web sites. Encrypted traffic cannot be sniffed, and therefore, cannot be monitored. HTTPS traffic should only be allowed when necessary. Most web sites a student needs to access are HTTP, not HTTPS. Due to the nature of HTTPS protocol, and the fact that encryption is an inherent security risk to your network, its use should be restricted.
Adding a security policy that encompasses a list of allowed secure sites will ensure that any HTTPS sites that are required are the only sites a student can go to.

FTP

For the most part, students should not be using FTP. FTP is not HTTP or HTTPS so you cannot use URL flitting to restrict where they go. This can be controlled with destination IPs in the security policy. With a policy that specifically outlines which FTP addresses are allowed, all other will be blocked.

Example security policies

Given these requirements, an example set of security policies could look like the following illustration. In a large setup, all the IPs for the students are treated by one of these four policies.

Example security policies

Given these requirements, an example set of security policies could look like the following illustration. In a large setup, all the IPs for the students are treated by one of these four policies.

Figure 25: Simple security policy setup

<table>
<thead>
<tr>
<th>Seq. No.</th>
<th>ID</th>
<th>Source</th>
<th>Destination</th>
<th>Schedule</th>
<th>Service</th>
<th>Action</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Student PCs</td>
<td>All</td>
<td>always</td>
<td>HTTPS</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Student PCs</td>
<td>all</td>
<td>always</td>
<td>HTTP</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Student PCs</td>
<td>All DNS</td>
<td>always</td>
<td>DNS</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Student PCs</td>
<td>All FTP</td>
<td>always</td>
<td>FTP</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>all</td>
<td>all</td>
<td>always</td>
<td>ANY</td>
<td>Implicit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The last policy in the list, included by default, is a deny policy. This adds to the potential of error that could end up allowing unwanted traffic to pass. The deny policy ensures that any traffic making it to this point is stopped. It can also help in further troubleshooting by viewing the logs for denied traffic.

With these policies in place, even before packet inspection occurs, the FortiGate, and the network are fairly secure. Should any of the UTM profiles fail, there is still a basic level of security.

UTM Profiles

In FortiOS 4.0 MR2, the protection profiles have been broken into individual profiles. Each UTM feature is now its own component, which can make setting up network security easier.

Antivirus profiles

Antivirus screening should be enabled for any service you have enabled in the security policies. In the case above, HTTP, FTP, as well as POP3 and SMTP (assuming there is email access for students). There is not a virus scan option for HTTPS, because the content is encrypted. Generally speaking, most of the network traffic will be students surfing the web.

To configure antivirus profiles in the web-based manager, go to UTM Profiles > Antivirus > Profile, or use the CLI commands under config antivirus profile.

Web filtering

The actual filtering of URLs - sites and content - should be performed by FortiGuard. It is easier and web sites are constantly being monitored, and new ones reviewed and added to the FortiGuard databases every day. The FortiGuard categories provide an extensive list of offensive, and non-productive sites.

As well, there are additional settings to include in a web filtering profile to best contain a student’s web browsing.
• Web URL filtering should be enabled to set up exemptions for web sites that are blocked or reasons other than category filtering. It also prevents the use of IP addresses to get around web filtering.

• Block invalid URLs - HTTPS only. This option inspects the HTTPS certificate and looks at the URL to ensure it’s valid. It is common for proxy sites to create an HTTPS certificate with a garbage URL. If the site is legitimate, it should be set up correctly. If the site approach to security is to ignore it, then their security policy puts your network at risk and the site should be blocked.

Web filtering options are configured in the web-based manager by going to UTM Profiles > Web filter > Profile, or in the CLI under config webfilter profile.

Advanced options
There are a few Advanced options to consider for a web filtering profile:

• Enable Provide details for blocked HTTP 4xx and 5xx errors. Under normal circumstances there are exploits that can be used with 400 and 500 series messages to access the web site. While most students probably won’t know how to do this, there is no harm in being cautious. It only takes one.

• Enable Rate Images by URL. This option only works with Google images. It examines the URL that the images is stored at to get a rating on it, then blocks or allows the image based on the rating of the originating URL. It does not inspect the image contents. Most image search engines to a prefect and pass the images directly to the browser.

• Enable Block HTTP redirects by rating. An HTTP redirect is one method of getting around ratings. Go to one web site that has an allowed rating, and it redirects to another web site that may want blocked.

Categories and Classifications
For the selection of what FortiGuard categories and classifications that should be blocked, that is purely based on the school system and its Internet information policy.

Email Filtering
Other than specific teacher-led email inboxes, there is no reason why a student should be able to access, read or send personal email. Ports for POP3, SMTP and IMAP should not be opened in a security policies.

IPS
The intrusion protection profiles should be used to ensure the student PCs are not vulnerable to attacks, nor do you want students making attacks. As well, IPS can do more than simple vulnerability scans. With a FortiGuard subscription, IPS signatures are pushed to the FortiGate unit. New signatures are released constantly for various intrusions as they are discovered.

FortiOS includes a number of predefined IPS sensors that you can enable by default. Selecting the all_default signature is a good place to start as it includes the major signatures.

To configure IPS sensors in the web-based manager, go to UTM Profiles > Intrusion Protection > IPS Sensor, on the CLI use commands under config ips sensor.
Application control

Application control uses IPS signatures to limit the use of instant messaging and peer-to-peer applications which can lead to possible infections on a student’s PC. FortiOS includes a number of pre-defined application categories. To configure and maintain application control profiles in the web-based manager, go to UTM Profiles > Application Control > Application Control List. In the CLI use commands under config application list.

Some applications to consider include proxies, botnets, toolbars and P2P applications.

Logging

Turn on all logging - every option in this section should be enabled. This is not where you decide what you are going to log. It is simply defining what the UTM profiles can log.

Logging everything is a way to monitor traffic on the network, see what student’s are utilizing the most, and locate any potential holes in your security plan. As well, keeping this information may help to prove negligence later in necessary.

Tag management

Tag management provide a method of categorizing, or labelling objects within FortiOS using keywords. You can give the following elements a “tag”, similar to a keyword:

- IPS signature
- application signature
- security policy
- firewall address

Tagging is way to organize the various elements, especially if you have a large number of addresses, security policies to manage and keep track of. Tagging enables you to break these elements into groups, but each element can belong to more than one group. Tags help you find elements which have something in common, be it a group, user or location. This is very similar to tagging found on photo sharing sites.

To use tagging, you need to enable it for 1U FortiGate units. It is enabled by default on all 2U FortiGate units and blades.

To enable tagging - web-based manager

1. Go to System > Admin > Settings.
2. Select Object Tagging and Coloring.
3. Select Apply.

To enable tagging - CLI

```
config system settings
set gui-object-tags
end
```

Adding and removing tags

You add and remove tags when you create the various elements. For example, when adding a firewall address, a section below the Interface selection enables you to add tags for that element, such as the department, region, or really, anything to help identify the element. When editing, applied tags appear as well.
To remove a tag, in the element, click the tag in the Applied Tags list.

**Reviewing tags**

Tags can be reviewed in one location by going to System > Config > Tag Management. In this screen, all tags used appear. The visual size of the tag name indicates the usage; the bigger the size, the more it is used. By hovering over the keyword, a fly out indicates how many times it has been used.

To see where it was used, click the keyword. An Object Usage window displays all the reference categories where the keyword was used, and the number of times. Selecting the expand arrow further details its use.

Further, for security policies for example, you can select the View icon and see the details of the particular element. If need be, select the Edit icon to modify the element.
Tagging guidelines

Given the ease that tags can be added to elements in FortiOS, it makes sense to jump right in and begin applying tags to elements and objects. However, this type of methodology will lead to problems down the road as new elements are added.

A methodology should be considered and developed before applying tags. This doesn't mean you need to develop an entire thesaurus or reference guide for all possibilities of tags. However, taking some time to develop a methodology for the keywords you intend to use will benefit later when new security policies, addresses, and so on are added.

Some things to consider when developing a tag list:

- the hierarchy used for the organization such as region, city location, building location
- department names and if short forms or long forms are used
- will acronyms be used or terms spelled out.
- how granular will the tagging be

As tags are added, previously used tags appear so there is an opportunity to use previously used tags. However, you want to avoid a situation where both accounting and acct are both options. This is also important if there are multiple administrators in different locations to ensure consistency.

At any time, you can change or even remove tags. It is best to do a bit of planning ahead of time to avoid unnecessary work later on.

Software switch

A software switch, or soft switch, is a virtual switch that is implemented at the software, or firmware level, rather than the hardware level. Adding a software switch can be used to simplify communication between devices connected to different FortiGate interfaces. For example, using a software switch you can place the FortiGate interface connected to an internal network on the same subnet as your wireless interfaces. Then devices on the internal network can communicate with devices on the wireless network without any additional configuration such as additional security policies, on the FortiGate unit.

It can also be useful if you require more hardware ports on for the switch on a FortiGate unit. For example, if your FortiGate unit has a 4-port switch, WAN1, WAN2 and DMZ interfaces, and you need one more port, you can create a soft switch that can include the 4-port switch and the DMZ interface all on the same subnet. These types of applications also apply to wireless interfaces and virtual wireless interfaces and physical interfaces such as those with FortiWiFi and FortiAP unit.

Similar to a hardware switch, a software switch functions like a single interface. A software switch has one IP address; all of the interfaces in the software switch are on the same subnet. Traffic between devices connected to each interface are not regulated by security policies, and traffic passing in and out of the switch are affected by the same policy.

There are a few things to consider when setting up a software switch:

- Ensure you create a back up of the configuration.
- Ensure you have at least one port or connection such as the console port to connect to the FortiGate unit. If you accidentally combine too many ports, you will need a way to undo any errors.
- The ports that you include must not have any link or relation to any other aspect of the FortiGate unit. For example, DHCP servers, security policies, and so on.
To create a software switch - web-based manager
1. Go to System > Network > Interface and select Create New.
2. Enter a Name for the switch.
3. Set Type to Software Switch.
4. Select the interfaces to add to the switch.
5. Enter an IP address.
6. Select OK.

To create a software switch - CLI
```
config system switch-interface
 edit <switch-name>
 set type switch
 set member <interface_list>
 end
config system interface
 edit <switch_name>
 set ip <ip_address>
 set allowaccess https ssh ping
 end
```

Soft switch example
For this example, the wireless interface (WiFi) needs to be on the same subnet as the DMZ1 interface to facilitate wireless syncing from an iPhone and a local computer. The synching between two subnets is problematic. By putting both interfaces on the same subnet the synching will work. The software switch will accomplish this.

Clear the interfaces and back up the configuration
First, ensure that the interfaces are not being used with any other security policy or other use on the FortiGate unit. Check the WiFi and DMZ1 ports to ensure DHCP is not enabled on the interface and there are no other dependencies with these interfaces.

Next, save the current configuration, in the event something doesn’t work, recovery can be quick.

To back up the configuration
1. Go to System > Dashboard > Status.
2. In the System Information widget, select Backup in the System Configuration row.
3. Select Backup from the backup window.
4. Select the location to save the configuration file.

Merge the interfaces
The plan is to merge the WiFi port and DMZ1 port. This will create a software switch with a name of "synchro" with an IP address of 10.10.21.12. The steps will create the switch, add the IP and then set the administrative access for HTTPS, SSH and Ping.
To merge the interfaces - web-based manager
1. Go to System > Network > Interface and select Create New.
2. Enter the Name of syncrho.
3. Select the Type of Software Switch.
4. From the Available Interfaces list, select DMZ1 and select the Right arrow to move it to the Selected Interfaces list.
5. Repeat the above step for the WiFi interface.
6. Enter the IP/Netmask of 10.10.21.12/255.255.255.0.
7. For the Administrative Access, select HTTPS, PING and SSH.
8. Select OK.

To merge the interfaces - CLI

```bash
config system switch-interface
edit syncrho
set type switch
set member dmz1 wifi
end
config system interface
edit syncrho
set ip 10.10.21.12
set allowaccess https ssh ping
end
```

Final steps

With the switch set up, you can now add security policies, DHCP servers an any other configuration that you would normally do to configure interfaces on the FortiGate unit.

Replacement messages list

The replacement message list in System > Config > Replacement Message.

The replacement messages list enables you to view and customize replacement messages. Use the expand arrow beside each type to display the replacement messages for that category. Select the Edit icon beside each replacement message to customize that message for your requirements.

If you are viewing the replacement messages list in a VDOM, any messages that have been customized for that VDOM are displayed with a Reset icon that you can use to reset the replacement message to the global version.

For connections requiring authentication, the FortiGate unit uses HTTP to send an authentication disclaimer page for the user to accept before a security policy is in effect. Therefore, the user must initiate HTTP traffic first in order to trigger the authentication disclaimer page. Once the disclaimer is accepted, the user can send whatever traffic is allowed by the security policy.
Replacement message images

You can add images to replacement messages to:

- disclaimer pages
- login pages
- declined disclaimer pages
- login failed page
- login challenge pages
- keepalive pages

Image embedding is also available to the endpoint NAC download portal and recommendation portal replacement messages, as well as HTTP replacement messages. Supported image formats are GIF, JPEG, TIFF and PNG. The maximum file size supported is 6000 bytes.

Adding images to replacement messages

To upload an image for use in a message

1. Go to System > Config > Replacement Message.
2. Select Manage Images at the top of the page.
3. Select Create New.
4. Enter a Name for the image.
5. Select the Content Type.
6. Select Browse to locate the file and select OK.

The image that you include in a replacement message, must have the following html:

```html
<img src=%%IMAGE: <config_image_name>%% size=<bytes> >
```

For example:

```html

```

Modifying replacement messages

Replacement messages can be modified to include a message or content that suits your organization.

Use the expand arrows to view the replacement message list for a given category. Messages are in HTML format. For descriptions of the replacement message tags, see Replacement message tags.

To change a replacement message, go to System > Config > Replacement Message and expand the replacement message category to access the replacement message that you want to modify. Select the message and select Edit.

Within the message edit screen, the Allowed Formats line indicates whether the content can be HTML code or simple text. indicates what type of format the replacement message is in, Text or HTML. For example, the HTTP virus replacement message’s format is HTTP and the Email file block replacement message is Text. The Size indicates the maximum number of characters allowed in the message.
Replacement message tags

Replacement messages can include replacement message tags, or variables. When users receive the message, the message tag is replaced with content relevant to the message. The table lists the replacement message tags that you can use.

Table 19: Replacement message tags

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%AUTH_LOGOUT%</td>
<td>The URL that will immediately delete the current policy and close the session. Used on the auth-keepalive page.</td>
</tr>
<tr>
<td>%AUTH_REDIR_URL%</td>
<td>The auth-keepalive page can prompt the user to open a new window which links to this tag.</td>
</tr>
<tr>
<td>%CATEGORY%</td>
<td>The name of the content category of the web site.</td>
</tr>
<tr>
<td>%DEST_IP%</td>
<td>The IP address of the request destination from which a virus was received. For email this is the IP address of the email server that sent the email containing the virus. For HTTP this is the IP address of web page that sent the virus.</td>
</tr>
<tr>
<td>%DURATION% (FortiOS Carrier only)</td>
<td>The amount of time in the reporting period. This is user defined in the protection profile.</td>
</tr>
<tr>
<td>%EMAIL_FROM%</td>
<td>The email address of the sender of the message from which the file was removed.</td>
</tr>
<tr>
<td>%EMAIL_TO%</td>
<td>The email address of the intended receiver of the message from which the file was removed.</td>
</tr>
<tr>
<td>%FAILED_MESSAGE%</td>
<td>The failed to login message displayed on the auth-login-failed page.</td>
</tr>
<tr>
<td>%FILE%</td>
<td>The name of a file that has been removed from a content stream. This could be a file that contained a virus or was blocked by antivirus file blocking. %FILE% can be used in virus and file block messages.</td>
</tr>
<tr>
<td>%FORTIGUARD_WF%</td>
<td>The FortiGuard - Web Filtering logo.</td>
</tr>
<tr>
<td>%FORTINET%</td>
<td>The Fortinet logo.</td>
</tr>
<tr>
<td>%LINK%</td>
<td>The link to the FortiClient Host Security installs download for the Endpoint Control feature.</td>
</tr>
<tr>
<td>%HTTP_ERR_CODE%</td>
<td>The HTTP error code. &quot;404&quot; for example.</td>
</tr>
<tr>
<td>%HTTP_ERR_DESC%</td>
<td>The HTTP error description.</td>
</tr>
<tr>
<td>%KEEPALIVE_URL% (FortiOS Carrier only)</td>
<td>%KEEPALIVE_URL% automatically connects to this URL every %TIMEOUT% seconds to renew the connection policy.</td>
</tr>
<tr>
<td>%MMS_SENDER% (FortiOS Carrier only)</td>
<td>Senders MSISDN from message header.</td>
</tr>
<tr>
<td>%MMS_RECIPIENT% (FortiOS Carrier only)</td>
<td>Recipients MSISDN from message header.</td>
</tr>
<tr>
<td>%MMS_SUBJECT% (FortiOS Carrier only)</td>
<td>MMS Subject line to help with message identity.</td>
</tr>
</tbody>
</table>
### Table 19: Replacement message tags (Continued)

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%MMS_HASH_CHECKSUM</td>
<td>Value derived from hash calculation - will only be shown on duplicate message alerts.</td>
</tr>
<tr>
<td>%MMS_THRESH%</td>
<td>Mass MMS alert threshold that triggered this alert.</td>
</tr>
<tr>
<td>%NIDSEVENT%</td>
<td>The IPS attack message. %NIDSEVENT% is added to alert email intrusion messages.</td>
</tr>
<tr>
<td>%NUM_MSG% (FortiOS Carrier only)</td>
<td>The number of time the device tried to send the message with banned content within the reporting period.</td>
</tr>
<tr>
<td>%OVERRIDE%</td>
<td>The link to the FortiGuard Web Filtering override form. This is visible only if the user belongs to a group that is permitted to create FortiGuard web filtering overrides.</td>
</tr>
<tr>
<td>%OVRD_FORM%</td>
<td>The FortiGuard web filter block override form. This tag must be present in the FortiGuard Web Filtering override form and should not be used in other replacement messages.</td>
</tr>
<tr>
<td>%PROTOCOL%</td>
<td>The protocol (http, ftp, pop3, imap, or smtp) in which a virus was detected. %PROTOCOL% is added to alert email virus messages.</td>
</tr>
<tr>
<td>%QUARFILENAME%</td>
<td>The name of a file that has been removed from a content stream and added to the quarantine. This could be a file that contained a virus or was blocked by antivirus file blocking. %QUARFILENAME% can be used in virus and file block messages. Quarantining is only available on FortiGate units with a local disk.</td>
</tr>
<tr>
<td>%QUOTA_INFO%</td>
<td>Display information about the traffic shaping quota setting that is blocking the user. Used in traffic quota control replacement messages.</td>
</tr>
<tr>
<td>%QUESTION%</td>
<td>Authentication challenge question on auth-challenge page. Prompt to enter username and password on auth-login page.</td>
</tr>
<tr>
<td>%SERVICE%</td>
<td>The name of the web filtering service.</td>
</tr>
<tr>
<td>%SOURCE_IP%</td>
<td>The IP address of the request originator who would have received the blocked file. For email this is the IP address of the user’s computer that attempted to download the message from which the file was removed.</td>
</tr>
<tr>
<td>%TIMEOUT%</td>
<td>Configured number of seconds between authentication keepalive connections. Used on the auth-keepalive page.</td>
</tr>
<tr>
<td>%URL%</td>
<td>The URL of a web page. This can be a web page that is blocked by web filter content or URL blocking. %URL% can also be used in http virus and file block messages to be the URL of the web page from which a user attempted to download a file that is blocked.</td>
</tr>
<tr>
<td>%VIRUS%</td>
<td>The name of a virus that was found in a file by the antivirus system. %VIRUS% can be used in virus messages.</td>
</tr>
</tbody>
</table>
Mail replacement messages

The FortiGate unit sends the mail replacement messages to email clients using IMAP, POP3, or SMTP when an event occurs such as antivirus blocking a file attached to an email that contains a virus. Email replacement messages are text messages. If the FortiGate unit supports SSL content scanning and inspection these replacement messages can also be added to IMAPS, POP3S, and SMTPS email messages.

Table 20: Mail replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus message</td>
<td>Virus Scan (any email protocol within an antivirus profile)</td>
<td>If a match is detected, the infected file from the email message is deleted and replaced with the message.</td>
</tr>
<tr>
<td>File block message</td>
<td>File Filter (file filter list selected within the antivirus profile)</td>
<td>If a match is detected, the incoming file is blocked and triggers this message.</td>
</tr>
<tr>
<td>Oversized file message</td>
<td>Oversized File/Email set to Block (within protocol options list)</td>
<td>If a match is detected, the file is removed and replaced with this message.</td>
</tr>
<tr>
<td>Fragmented email</td>
<td>Allow Fragmented Emails (an exception: this is not enabled)</td>
<td>If a match is detected, the fragmented email is blocked and this replacement message replaces the first fragment of the fragmented email.</td>
</tr>
<tr>
<td>Data leak prevention message</td>
<td>A rule is set to Block (DLP sensor)</td>
<td>If a match is detected, the FortiGate unit blocks messages and this replacement message is sent to the sender.</td>
</tr>
<tr>
<td>Subject of data leak prevention message</td>
<td>Block, Ban, Ban Sender, Quarantine IP address, and Quarantine interface (DLP sensor)</td>
<td>This replacement message is added to the subject field of all email messages when a match is found.</td>
</tr>
<tr>
<td>Banned by data leak prevention message</td>
<td>A rule is set to Ban (DLP sensor)</td>
<td>Replaces a blocked email message and replaces any additional email messages that the banned user sends until they are removed from the banned user list.</td>
</tr>
<tr>
<td>Sender banned by data leak prevention message</td>
<td>A rule set to Ban Sender (DLP sensor)</td>
<td>Replaces a blocked email message with this message and replaces any additional email messages that the banned user sends until the user is removed from the banned user list.</td>
</tr>
<tr>
<td>Virus message (splice mode)</td>
<td>Splice mode</td>
<td>If the antivirus system detects a virus in an SMTP email message, then the FortiGate FortiGate unit aborts the SMTP session and returns a 554 SMTP error message to the sender that is included in the message.</td>
</tr>
</tbody>
</table>
HTTP replacement messages

The FortiGate unit sends the HTTP replacement messages listed in the following table to web browsers using the HTTP protocol when an event occurs such as antivirus blocking a file that contains a virus in an HTTP session. HTTP replacement messages are HTML pages.

If the FortiGate unit supports SSL content scanning and inspection, and if under HTTPS in the protocol option list has Enable Deep Scan enabled, these replacement messages can also replace web pages downloaded using the HTTPS protocol.

### Table 20: Mail replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>File block message (splice mode)</td>
<td>Splice mode</td>
<td>If the antivirus file filter deleted a file from an SMTP email message, the FortiGate unit aborts the SMTP session and returns a 554 SMTP error message to the sender that is included in the message.</td>
</tr>
<tr>
<td>Oversized file message (splice mode)</td>
<td>Splice mode AND Oversized File/Email is set to Block (protocol option list)</td>
<td>If the FortiGate unit blocks an oversize SMTP email message, the FortiGate unit aborts the SMTP session and returns a 554 SMTP error message to the sender that is included in the message.</td>
</tr>
</tbody>
</table>

### Table 21: HTTP replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus message</td>
<td>Virus Scan for HTTP or HTTPS (antivirus profile)</td>
<td>Displays a web page in the client’s browser when an entry in the selected file filter list matches HTTP GET. The FortiGate unit blocks the file being downloaded using HTTP GET.</td>
</tr>
<tr>
<td>Infection cache message</td>
<td>Client comforting (web filter profile)</td>
<td>This message is triggered only after the blocked URL is attempted for a second time.</td>
</tr>
<tr>
<td>File block message</td>
<td>File Filter for HTTP or HTTPS (antivirus profile)</td>
<td>Displays in the client's browser when an entry in the selected file filter list matches HTTP GET and the FortiGate unit blocks that file that is being downloaded.</td>
</tr>
<tr>
<td>Oversized file message</td>
<td>Oversized File/Email set to Block for HTTP or HTTPS (protocol options list)</td>
<td>The FortiGate unit blocks an oversized file that is being downloaded that uses a HTTP GET and replaces the file with this web page that is displayed by the client browser.</td>
</tr>
</tbody>
</table>
### Table 21: HTTP replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data leak prevention message</td>
<td>A rule is set to Block (DLP sensor)</td>
<td>If the FortiGate unit blocks a page/file that the user loads using HTTP GET with this web page, the message appears. This message appears if the FortiGate unit also blocks the user that is sending information using HTTP POST.</td>
</tr>
<tr>
<td>Banned by data leak prevention message</td>
<td>A rule is set to Ban (DLP sensor)</td>
<td>This message replaces a blocked web page or file. This message also replaces any additional web pages or files that the banned user attempts to access until the user is removed from the banned user list.</td>
</tr>
<tr>
<td>Banned word message</td>
<td>Banned word’s score (web filter profile)</td>
<td>If the banned word’s score exceeds the threshold set in the web filter profile, the page is blocked and the blocked page is replaced with this message.</td>
</tr>
<tr>
<td>Content-type block message</td>
<td>N/A</td>
<td>Email headers include information about content types such as image for pictures, and so on. If a specific content-type is blocked, the blocked message is replaced with this web page message.</td>
</tr>
<tr>
<td>URL block message</td>
<td>Web URL Filtering (web filter profile)</td>
<td>This message replaces a web page that the FortiGate unit blocked.</td>
</tr>
<tr>
<td>Archive block message</td>
<td>A DLP sensor has, in a sensor filter, Archive set to Full or Summary</td>
<td>This message displays in the client’s browser when archive HTTP downloads are blocked by the FortiGate unit.</td>
</tr>
<tr>
<td>Web Filter error message</td>
<td>Allow Websites When a Rating Error Occurs option in Advanced Filter, in a web filter profile</td>
<td>This message displays in the clients browser when there are HTTP web filter errors.</td>
</tr>
<tr>
<td>Client block</td>
<td>File Filter for HTTP or HTTPS (antivirus profile)</td>
<td>This message displays in the client’s browser when a file that is being uploaded by an HTTP POST is blocked by the FortiGate unit.</td>
</tr>
<tr>
<td>Client antivirus</td>
<td>Virus Scan for HTTP or HTTPS (antivirus profile)</td>
<td>This message displays in a client’s browser when an infected file that is being uploaded using FTP PUT is detected by the FortiGate unit.</td>
</tr>
<tr>
<td>Client filesize</td>
<td>Oversized File/Email set to Block for HTTP or HTTPS (protocol options list)</td>
<td>If an oversized file is being uploaded using FTP PUT, and the FortiGate unit blocks the file that is being uploaded, this message replaces the web page.</td>
</tr>
</tbody>
</table>
Web Proxy replacement messages

The FortiGate unit sends Web Proxy replacement messages listed in the table below when a web proxy event occurs that is detected and matches the web proxy configuration. These replacement messages are web pages that appear within your web browser.

The following web proxy replacement messages require an identity-based security policy so that the web proxy is successful. You can also enable FTP-over-HTTP by selecting the FTP option in System > Network > Explicit Proxy.

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client banned word</td>
<td>Web Content filtering (this is in the CLI)</td>
<td>This message displays in a client’s browser when the FortiGate unit blocks a web page that is being uploaded with an HTTP PUT and contains content that matches an entry in the Web Content Filter list.</td>
</tr>
<tr>
<td>Client archive block</td>
<td>set archive-log (corrupted encrypted mailbomb multipart nested unhandled) (config antivirus profile, under config setting in the CLI)</td>
<td>This message displays when a user is attempting to upload a banned archived file.</td>
</tr>
<tr>
<td>POST block</td>
<td>HTTP POST Action is set to Block (profile)</td>
<td>This message displays this web page when the FortiGate unit blocks a HTTP POST.</td>
</tr>
<tr>
<td>Invalid certificate block</td>
<td>When block is set in: smtps-client-cert-request ftls-client-cert-request https-client-cert-request (CLI)</td>
<td>This message displays when a request for a certificate is determined by the FortiGate unit to be invalid and blocks the certificate.</td>
</tr>
</tbody>
</table>

Table 21: HTTP replacement messages
### Table 22: Web Proxy replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
</table>
| Web proxy access denied  | Web Proxy (default action set to Deny)                      | This message displays when both of the following are true, as well as when there is no web proxy policy defined:  
  - no web proxy policy is defined OR no existing policy matches the incoming request  
  - default action is set to Deny (System > Network > Explicit Proxy)  
  **Note:** The default action is ignored when there is at least one web policy defined. |
| Web proxy login challenge | N/A                                                         | This replacement message is triggered by a log in, and is always sent to the client’s browser with it is triggered; however, some browsers (Internet Explorer and Firefox) are unable to display this replacement message. |
| Web proxy login fail     | N/A                                                         | If a user name and password authentication combination is entered, and is accepted as incorrect, this replacement message appears. |
| Web proxy authorization fail | N/A                                                       | If a username and password is entered and is correct, this message appears. However, if the following is true, this message also appears:  
  - The user is not allowed to view the request resources, (for example, in an Fortinet Single Sign On Agent setup and the authentication passes), and the username and password combo is correct, but the user group does not match a user group defined in the security policy. |
| Web proxy HTTP error     | N/A                                                         | This message is triggered whenever there is a web proxy HTTP error. This message forwards the actual servers' error message and a web proxy internal error message, for example, error 404: web page is not found. |
| Web proxy user-limit (CLI only) | user-limit (config system replacemsg webproxy)            | This message is triggered when a web proxy user has met the threshold that is defined in global resources or vdom resources. |
**FTP Proxy replacement message**

The FortiGate unit sends the FTP proxy replacement message whenever a user access the FTP proxy. The replacement message is a banner-message that contains only text.

**FTP replacement messages**

The FortiGate unit sends the FTP replacement messages listed in the table below to FTP clients when an event occurs such as antivirus blocking a file that contains a virus in an FTP session. FTP replacement messages are text messages.

**Table 23: FTP replacement messages**

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus message</td>
<td>Virus Scan for FTP (antivirus profile)</td>
<td>If a match is detected and the infected file is deleted when being downloaded using FTP, the FortiGate unit sends this message to the FTP client.</td>
</tr>
<tr>
<td>Blocked message</td>
<td>File Filter for FTP (antivirus profile)</td>
<td>If a match is detected and a file that is being downloaded uses FTP, and the FortiGate unit blocks the download, the FortiGate unit sends this message to the FTP client.</td>
</tr>
<tr>
<td>Oversized message</td>
<td>Oversized File/Email set to Block for FTP (antivirus profile)</td>
<td>If an oversize file that is being downloaded using FTP is blocked, the FortiGate unit sends this message to the FTP client.</td>
</tr>
<tr>
<td>DLP message</td>
<td>A rule set to Block (DLP sensor)</td>
<td>This replacement message replaces a blocked FTP download.</td>
</tr>
<tr>
<td>DLP ban message</td>
<td>A rule set to Ban (blocks an FTP session)</td>
<td>If a match is detected, and is using protocols such as FTP PUT and FTP GET, this replacement message displays. This message is displayed whenever the banned user attempts to access, until the user is removed from the banned user list.</td>
</tr>
<tr>
<td>Archive block</td>
<td>A DLP rule has Archived enabled, Action is set to Block, and All-FTP (file transfers) is also selected.</td>
<td>If a match is detected, and a file is being transferred, this replacement message displays. This message is displayed whenever a file is being transferred over FTP, and that DLP rule has archiving enabled as well as Action set to Block.</td>
</tr>
</tbody>
</table>

**NNTP replacement messages**

The FortiGate unit sends the NNTP replacement messages listed in the following table to NNTP clients when an event occurs such as antivirus blocking a file attached to an NNTP message that contains a virus. NNTP replacement messages are text messages.
Table 24: NNTP replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus message</td>
<td>Virus Scan for NNTP (antivirus profile)</td>
<td>If a match is detected, and an infected file is attached to an NNTP message, and the FortiGate unit deletes the NNTP message, the FortiGate unit sends the replacement message to the client.</td>
</tr>
<tr>
<td>Blocked message</td>
<td>File Filter for NNTP (antivirus profile)</td>
<td>This message is sent to the client when a file attached to an NNTP message is blocked by the FortiGate unit.</td>
</tr>
<tr>
<td>Oversized message</td>
<td>Oversized File/Email set to Block for NNTP (protocol options list)</td>
<td>If the FortiGate unit removes an oversized file from an NNTP message, this message is sent instead.</td>
</tr>
<tr>
<td>Data Leak prevention message</td>
<td>A rule set to Block (DLP sensor)</td>
<td>If the FortiGate unit blocks an NNTP message, the message is replaced with this replacement message.</td>
</tr>
<tr>
<td>Subject of data leak prevention message</td>
<td>Block, Ban, Quarantine IP address, and Quarantine interface (DLP sensor)</td>
<td>This message is added to the subject field of all NNTP messages.</td>
</tr>
<tr>
<td>Banned by data leak prevention message</td>
<td>A rule set to Ban (DLP sensor)</td>
<td>If a match is detected, this message replaces a blocked NNTP message. This message also replaces any additional NNTP messages that the banned user sends until the user is removed from the banned user list.</td>
</tr>
</tbody>
</table>

Alert Mail replacement messages

The FortiGate unit adds the alert mail replacement messages listed in the following table to alert email messages sent to administrators.

If you enable the option Send alert email for logs based on severity, whether or not replacement messages are sent by alert email depends on how you set the alert email in Minimum log level.
Table 25: Alert mail replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus message</td>
<td>Virus detected (alert email message) AND Virus Scan (antivirus profile)</td>
<td>If a match is detected, this message displays. <strong>Note:</strong> Both options/settings must be enabled for this replacement message to appear.</td>
</tr>
<tr>
<td>Block message</td>
<td>Virus detected (alert email messages) AND File Filter (antivirus profile)</td>
<td>This message displays when the FortiGate unit blocks a file. <strong>Note:</strong> Both options/settings must be enabled for this replacement message to appear.</td>
</tr>
<tr>
<td>Intrusion message</td>
<td>Intrusion detected (alert email message) AND IPS sensor or DoS sensor is enabled</td>
<td>If a match is detected, as well as an attack, this message displays. <strong>Note:</strong> Both options/settings must be enabled for this replacement message to appear.</td>
</tr>
<tr>
<td>Critical event message</td>
<td>Send alert email for logs based on severity AND Minimum log level set to Alert or Emergency (alert email message)</td>
<td>Whenever a critical level event log message is generated, this message is sent; however, unless you configure an alert email message with both of the said options enabled, this message does not appear.</td>
</tr>
<tr>
<td>Disk full message</td>
<td>Disk Usage (alert email message)</td>
<td>If the disk usage reaches the percentage configured in the alert email notification settings, this replacement message displays.</td>
</tr>
</tbody>
</table>

Spam replacement messages

The FortiGate unit adds the Spam replacement messages listed in the following table to SMTP server responses if the email message is identified as spam and the spam action is discard. If the FortiGate unit supports SSL content scanning and inspection these replacement messages can also be added to SMTPS server responses.

Table 26: Spam replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email IP</td>
<td>IP address BWL check (for any email protocol within an email filter profile)</td>
<td>If a match is detected to the last hop IP address, then this message is added.</td>
</tr>
<tr>
<td>DNSBL/ORD BL</td>
<td>spamrbl (CLI) (for any email protocol within an email filter profile)</td>
<td>If the FortiGate unit identifies the email message as spam, this message is added.</td>
</tr>
</tbody>
</table>
Table 26: Spam replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELO/EHLO domain</td>
<td><em>HELO DNS lookup</em> (for any email protocol within an email filter profile)</td>
<td>If the FortiGate unit identifies an email message as spam, this message is added.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> <em>HELO DNS lookup</em> is not available for SMTPS.</td>
<td></td>
</tr>
<tr>
<td>Email address</td>
<td><em>E-mail Address BWL check</em> (for any email protocol within an email filter profile)</td>
<td>If the FortiGate unit identifies an email message as spam, this message is added.</td>
</tr>
<tr>
<td>Mime header</td>
<td><em>spamhdr check</em> (CLI) (for any email protocol within an email filter profile)</td>
<td>If the FortiGate unit identifies an email message as spam, this message is added.</td>
</tr>
<tr>
<td>Returned email domain</td>
<td><em>Return e-mail DNS check</em> (for any email protocol within an email filter profile)</td>
<td>If the FortiGate unit identifies an email message as spam, this message is added.</td>
</tr>
<tr>
<td>Banned word</td>
<td><em>Banned word check</em> (for any email protocol within an email filter profile)</td>
<td>If the FortiGate unit identifies an email message as spam, this message is added.</td>
</tr>
<tr>
<td>Spam submission message</td>
<td>Any email filtering option for any email protocol within an email filter profile</td>
<td>If the FortiGate unit identifies an email message as spam, it adds this message. <strong>Note:</strong> Email Filtering adds this message to all email tagged as spam. The message describes a button that the recipient of the message can select to submit the email signatures to the FortiGuard Antispam service if the email was incorrectly tagged as spam (a false positive).</td>
</tr>
</tbody>
</table>

Administration replacement message

If you enter the following CLI command the FortiGate unit displays the Administration Login Disclaimer whenever an administrator logs into the FortiGate unit’s web-based manager or CLI.

```
cfg sys glob
 set access-banner enable
end
```

The web-based manager administrator login disclaimer contains the text of the Login Disclaimer replacement message as well as Accept and Decline buttons. The administrator must select accept to login.
Authentication replacement messages

The FortiGate unit uses the text of the authentication replacement messages listed in Authentication replacement messages for various user authentication HTML pages that are displayed when a user is required to authenticate because a security policy includes at least one identity-based policy that requires firewall users to authenticate.

These replacement message pages are for authentication using HTTP and HTTPS. You cannot customize the firewall authentication messages for FTP and Telnet.

The authentication login page and the authentication disclaimer include replacement tags and controls not found on other replacement messages.

Users see the authentication login page when they use a VPN or a security policy that requires authentication. You can customize this page in the same way as you modify other replacement messages.

There are some unique requirements for these replacement messages:

- The login page must be an HTML page containing a form with ACTION="/" and METHOD="POST"
- The form must contain the following hidden controls:
  - `<INPUT TYPE="hidden" NAME="%%MAGICID%%" VALUE="%%MAGICVAL%%">`
  - `<INPUT TYPE="hidden" NAME="%%STATEID%%" VALUE="%%STATEVAL%%">`
  - `<INPUT TYPE="hidden" NAME="%%REDIRID%%" VALUE="%%PROTURI%%">`
- The form must contain the following visible controls:
  - `<INPUT TYPE="text" NAME="%%USERNAMEID%%" size=25>`
  - `<INPUT TYPE="password" NAME="%%PASSWORDID%%" size=25>`

Example

The following is an example of a simple authentication page that meets the requirements listed above.

```html
<HTML><HEAD><TITLE>Firewall Authentication</TITLE></HEAD>
<BODY><H4>You must authenticate to use this service.</H4>
<FORM ACTION="/" method="post">
<INPUT NAME="%%MAGICID%%" VALUE="%%MAGICVAL%%" TYPE="hidden">
<TABLE ALIGN="center" BGCOLOR="#00cccc" BORDER="0" CELLPADDING="15" CELLPADDING="15" CELLSPACING="0" WIDTH="320"><TBODY>
<TR><TH>Username:</TH>
<TD><INPUT NAME="%%USERNAMEID%%" SIZE="25" TYPE="text">
</TD></TR>
<TR><TH>Password:</TH>
<TD><INPUT NAME="%%PASSWORDID%%" SIZE="25" TYPE="password">
</TD></TR>
<TR><TD COLSPAN="2" ALIGN="center" BGCOLOR="#00cccc">
<INPUT NAME="%%STATEID%%" VALUE="%%STATEVAL%%" TYPE="hidden">
<INPUT NAME="%%REDIRID%%" VALUE="%%PROTURI%%" TYPE="hidden">
<INPUT VALUE="Continue" TYPE="submit">
</TD></TR>
</TBODY></TABLE></FORM></BODY></HTML>
```
<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disclaimer page</td>
<td>Enable Disclaimer and Redirect URL to (identity-based security policy)</td>
<td>After a firewall user authenticates with the FortiGate unit using HTTP or HTTPS, this message, which is a disclaimer page, displays. <strong>Note:</strong> The CLI includes auth-disclaimer-page-1, auth-disclaimer-page-2, and auth-disclaimer-page-3 that you can use to increase the size of the authentication disclaimer page replacement message.</td>
</tr>
<tr>
<td>Declined disclaimer page</td>
<td>N/A</td>
<td>When a firewall user selects the button on the Disclaimer page to decline access through the FortiGate unit, the Declined disclaimer page (replacement message) is displayed.</td>
</tr>
<tr>
<td>Login page</td>
<td>N/A</td>
<td>The HTML page displayed for firewall users who are required to authenticate using HTTP or HTTPS before connecting through the FortiGate FortiGate unit.</td>
</tr>
<tr>
<td>Login failed page</td>
<td>N/A</td>
<td>The HTML page displayed if firewall users enter an incorrect user name and password combination.</td>
</tr>
<tr>
<td>Success message</td>
<td>N/A</td>
<td>The page displays when a user authenticates for a Telnet session.</td>
</tr>
</tbody>
</table>
### Table 27: Authentication replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login challenge page</td>
<td>N/A</td>
<td>The HTML page displayed if firewall users are required to answer a question to complete authentication. The page displays the question and includes a field in which to type the answer. This feature is supported by RADIUS and uses the generic RADIUS challenge-access auth response. Usually, challenge-access responses contain a Reply-Message attribute that contains a message for the user (for example, “Please enter new PIN”). This message is displayed on the login challenge page. The user enters a response that is sent back to the RADIUS server to be verified. The Login challenge page is most often used with RSA RADIUS server for RSA SecurID authentication. The login challenge appears when the server needs the user to enter a new PIN. You can customize the replacement message to ask the user for a SecurID PIN.</td>
</tr>
<tr>
<td>Keepalive page</td>
<td><code>config system global set auth-keepalive enable end</code></td>
<td>The HTML page displayed with firewall authentication keepalive is enabled using the following command: Authentication keepalive keeps authenticated firewall sessions from ending when the authentication timeout ends. Go to User &gt; Options to set the Authentication Timeout.</td>
</tr>
<tr>
<td>FortiToken page</td>
<td><code>Two-factor authentication</code> is enabled</td>
<td>The message displays when the token password code is required as part of a user’s login credentials when that user has two-factor authentication enabled.</td>
</tr>
<tr>
<td>Email token page</td>
<td><code>Two-factor authentication</code> is enabled and <code>Email to</code> is also enabled</td>
<td>The message displays when the token password code has been emailed to a user and is required as part of a user’s login credentials when that user has two-factor authentication enabled.</td>
</tr>
<tr>
<td>SMS token page</td>
<td><code>Two-factor authentication</code> is enabled and <code>SMS</code> is also enabled</td>
<td>The message displays when the token password code has been sent to a user’s mobile phone, and that code must be included in a user’s login credentials when that user has two-factor authentication enabled.</td>
</tr>
</tbody>
</table>
Captive Portal Default replacement messages

The Captive Portal Default replacement messages are used for wireless authentication only. You must have a VAP interface with the security set as captive portal to trigger these replacement messages.

Table 28: Captive Portal Default replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disclaimer page</td>
<td>VAP interface that has captive portal set</td>
<td>The message is a disclaimer agreement; if the user who is trying to access a web site that is not under the control of the network access provider and is given a choice to either agree to the terms and continue or not gain access to the site.</td>
</tr>
<tr>
<td>Declined disclaimer page</td>
<td>VAP interface that has captive portal set</td>
<td>Appears when the user who did not agree to the terms in the Disclaimer page message.</td>
</tr>
<tr>
<td>Login page</td>
<td>VAP interface that has captive portal set</td>
<td>The message is an authentication page.</td>
</tr>
<tr>
<td>Login failed page</td>
<td>VAP interface that has captive portal set</td>
<td>The message that appears when the user has failed to log in.</td>
</tr>
</tbody>
</table>

FortiGuard Web Filtering replacement messages

The FortiGate unit sends the FortiGuard Web Filtering replacement messages listed in the table to web browsers using the HTTP protocol when FortiGuard web filtering blocks a URL, provides details about blocked HTTP 4xx and 5xx errors, and for FortiGuard overrides. FortiGuard Web Filtering replacement messages are HTTP pages.

If the FortiGate unit supports SSL content scanning and inspection and if Protocol Recognition > HTTPS Content Filtering Mode is set to Deep Scan in the antivirus profile, these replacement messages can also replace web pages downloaded using the HTTPS protocol.

Table 29: FortiGuard Web Filtering replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL block message</td>
<td>config ftgd-wf set options (under config webfilter profile)</td>
<td>This message replaces a web page that is blocked by the FortiGate unit.</td>
</tr>
</tbody>
</table>
Table 29: FortiGuard Web Filtering replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP error message</td>
<td>Provide details for blocked HTTP 4xx and 5xx errors for HTTP or HTTPS (web filter profile)</td>
<td>This message replaces a web page that is blocked.</td>
</tr>
<tr>
<td>FortiGuard Web Filtering override form</td>
<td>ovrd-perm in config webfilter profile</td>
<td>If FortiGuard Web Filtering blocks a web page in this category, this message displays a web page. By using this web page, users can authenticate to get access to the page. Overrides are configured within the CLI using the ovrd-perm value in the config webfilter profile command. Note: Do not remove the %%OVRD_FORM%% tag. This tag provides the form used to initiate an override if FortiGuard Web Filtering blocks access to a web page.</td>
</tr>
<tr>
<td>FortiGuard Web Filtering quota expired message</td>
<td>Enforced Quota (web filter profile)</td>
<td>This message is added when a match is detected regarding FortiGuard quota.</td>
</tr>
<tr>
<td>FortiGuard Webfiltering warning portal message</td>
<td>Warning (action) for a filter in a web filter profile</td>
<td>This message replaces the blocked web page. The user can either select Proceed or Cancel, to proceed to the web site or cancel and return back to the previous web site. If they select Proceed, and filter category Require additional Authentication to proceed is enabled in the web filter profile, the user is required to log in.</td>
</tr>
</tbody>
</table>

**IM and P2P replacement messages**

The FortiGate unit sends the IM and P2P replacement messages listed in Table 30 to IM and P2P clients using AIM, ICQ, MSN, or Yahoo! Messenger when an event occurs such as antivirus blocking a file attached to an email that contains a virus. IM and P2P replacement messages are text messages.

Table 30: IM and P2P replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>File block message</td>
<td>File Filter for IM (application control list)</td>
<td>If a file that matches an entry in the selected file filter list for IM is deleted, this message replaces the file.</td>
</tr>
</tbody>
</table>
Table 30: IM and P2P replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>File name block message</td>
<td>File Filter antivirus for IM (application control list)</td>
<td>If a file name matches an entry in the selected file filter list, and is deleted, this message replaces it.</td>
</tr>
<tr>
<td>Virus message</td>
<td>Virus Scan for IM (application control list)</td>
<td>If an infected file is deleted, this message replaces the file.</td>
</tr>
<tr>
<td>Oversized file message</td>
<td>Oversized File/Email set to Block for IM (protocol options list)</td>
<td>If an oversized file is removed, this message replaces it.</td>
</tr>
<tr>
<td>Data leak prevention message</td>
<td>A rule set to Block (DLP sensor)</td>
<td>If a blocked IM or P2P message is blocked, this message replaces it.</td>
</tr>
<tr>
<td>Banned by data leak prevention message</td>
<td>A rule set to Ban (DLP sensor)</td>
<td>If an IM or P2P message is blocked, this message replaces it with this message. This message also replaces any additional messages that the banned user sends until they are removed from the banned user list.</td>
</tr>
<tr>
<td>Voice chat block message</td>
<td>Block Audio for AIM, ICQ, MSN, or Yahoo! (application control list)</td>
<td>If a match is detected, this message displays.</td>
</tr>
<tr>
<td>Video chat block message</td>
<td>set block-video enable in either AIM, ICQ, MSN, or Yahoo application list entries.</td>
<td>If a match is detected, this message displays.</td>
</tr>
<tr>
<td>Photo share block message</td>
<td>block-photo for MSN or Yahoo! (CLI) (application control list)</td>
<td>If a match is detected, this message displays.</td>
</tr>
</tbody>
</table>

Endpoint NAC replacement messages

The FortiGate unit sends one of the following messages to non-compliant users who attempt to use a security policy in which Endpoint NAC is enabled.
Table 31: Endpoint NAC replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoint NAC Download Portal</td>
<td>Quarantine Hosts to User Portal (Enforce compliance)</td>
<td>The user can download the FortiClient Endpoint Security application installer. If you modify this message, be sure to retain the %%LINK%% tag which provides the download URL for the FortiClient installer.</td>
</tr>
<tr>
<td>Endpoint NAC Recommendation Portal</td>
<td>Notify Hosts to Install FortiClient (Warn only) (Endpoint profile)</td>
<td>The user can either download the FortiClient Endpoint Security application installer or select the Continue to link to access their desired destination. If you modify this message, be sure to retain both the %%LINK%% tag which provides the download URL for the FortiClient installer and the %%DST_ADDR%% link that contains the URL that the user requested.</td>
</tr>
<tr>
<td>Endpoint NAC Block Page</td>
<td>N/A</td>
<td>This message appears when FortiClient is opened before FortiClient has time to see the HTTP message.</td>
</tr>
<tr>
<td>Endpoint NAC Recommendation Block Page</td>
<td>set recommendation-disclaimer enable (CLI)</td>
<td>This message displays when it is recommended that the endpoint be compliant so that the user may gain access to the network. Select Continue to link to access the desired destination. If you modify this message, be sure to retain both the %%LINK%% tag which provides the download URL for the FortiClient installer and the %%DST_ADDR%% link that contains the URL that the user requested.</td>
</tr>
<tr>
<td>Endpoint NAC Feature Block Page</td>
<td>N/A</td>
<td>This message displays when endpoint security is required and the FortiClient security check failed.</td>
</tr>
<tr>
<td>Endpoint NAC Recommendation Feature Block Page</td>
<td>FortiClient's antivirus settings enabled</td>
<td>This message displays when endpoint security is required and the FortiClient security check failed. Select Continue to link to access the desired destination.</td>
</tr>
</tbody>
</table>

**NAC quarantine replacement messages**

The page that is displayed for the user depends on whether NAC quarantine blocked the user because a virus was found, a DoS sensor detected an attack, an IPS sensor detected an attack, or a DLP rule with action set to Quarantine IP address or Quarantine Interface matched a session from the user.
The default messages inform the user of why they are seeing this page and recommend they contact the system administrator. You can customize the pages as required, for example to include an email address or other contact information or if applicable a note about how long the user can expect to be blocked.

Table 32: NAC quarantine replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus Message</td>
<td>Quarantine Virus Sender (antivirus profile; the FortiGate unit adds a source IP address or FortiGate interface to the banned user list)</td>
<td>The FortiGate unit displays this message as a web page when the blocked user attempts to connect through the FortiGate unit using HTTP on port 80 or when any user attempts to connect through a FortiGate interface added to the banned user list using HTTP on port 80.</td>
</tr>
<tr>
<td>DoS Message</td>
<td>attack or interface (CLI) (DoS sensor) AND applied to a DoS security policy</td>
<td>For a DoS Sensor the CLI quarantine option set to attacker or interface and the DoS Sensor added to a DoS security policy adds a source IP, a destination IP, or FortiGate interface to the banned user list. The FortiGate unit displays this message as a web page when the blocked user attempts to connect through the FortiGate unit using HTTP on port 80 or when any user attempts to connect through a FortiGate interface added to the banned user list using HTTP on port 80. This replacement message is not displayed if quarantine is set to both.</td>
</tr>
<tr>
<td>IPS Message</td>
<td>Quarantine Attackers (IPS sensor)</td>
<td>This message displays if Quarantine Attackers enabled in an IPS sensor filter or override and the IPS sensor applied to a security policy adds a source IP address, a destination IP address, or a FortiGate interface to the banned user list. The FortiGate unit displays this message as a web page when the blocked user attempts to connect through the FortiGate unit using HTTP on port 80 or when any user attempts to connect through a FortiGate interface added to the banned user list using HTTP on port 80. This message is not displayed if method is set to Attacker and Victim IP Address.</td>
</tr>
</tbody>
</table>
Traffic quota control replacement messages

When user traffic is going through the FortiGate unit and it is blocked by traffic shaping quota controls, users see the Traffic shaper block message or the Per IP traffic shaper block message when they attempt to connect through the FortiGate unit using HTTP.

The traffic quota HTTP pages should contain the %%QUOTA_INFO%% tag to display information about the traffic shaping quota setting that is blocking the user.

SSL VPN replacement message

The SSL VPN login replacement message is an HTML replacement message that formats the FortiGate SSL VPN portal login page. You can customize this replacement message according to your organization's needs. The page is linked to FortiGate functionality and you must construct it according to the following guidelines to ensure that it will work.

- The login page must be an HTML page containing a form with ACTION="%%SSL_ACT%%" and METHOD="%%SSL_METHOD%%"
- The form must contain the %%SSL_LOGIN%% tag to provide the login form.
- The form must contain the %%SSL_HIDDEN%% tag.

MM1 replacement messages

MM1 replacement messages are sent when, during MMS content scanning, FortiOS Carrier detects, for example a virus, using the MMS profile. The replacement messages for MM1 are listed in Table 33.

You must have Remove Blocked selected within the MMS profile if you want to remove the content that is intercepted during MMS scanning on the FortiGate unit.
<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM1 send-req virus message</td>
<td>Virus Scan (MMS profile)</td>
<td>This message is sent to the client when a virus is detected within multiple messages during the scan of the client’s m-send.req HTTP post request.</td>
</tr>
<tr>
<td>MM1 send-req file block message</td>
<td>Virus Scan (MMS profile)</td>
<td>This message is sent to the client when during the scan of the client’s m-send.req HTTP post request a banned file was found in multiple messages, the file is blocked and this message is sent to the client.</td>
</tr>
<tr>
<td>MM1 send-req carrier end point filter message</td>
<td>Carrier end-point filter for (MMS profile)</td>
<td>This message is sent to the client when, during the scan of the client’s m-send.req HTTP post request, a banned user and/or recipient was being contacted.</td>
</tr>
<tr>
<td>MM1 send-req content checksum block message</td>
<td>Content checksum (MMS profile)</td>
<td>This message is sent to the client when, during the scan of the client’s m-send.req HTTP post request, banned content was found.</td>
</tr>
<tr>
<td>MM1 send-req banned word message</td>
<td>Banned Word Check (Email filter profile)</td>
<td>This message is sent to the client when, during the scan of the client’s m-send.req HTTP post request, banned words were found in multiple messages.</td>
</tr>
<tr>
<td>MM1 send-req flood message</td>
<td>Message flood threshold (MMS profile)</td>
<td>This message is sent to the client when, during the scan of the client’s m-send.req HTTP post request, multiple messages that were being sent to a mobile device were flagged as message floods.</td>
</tr>
<tr>
<td>MM1 send-req duplicate message</td>
<td>MMS Bulk Email Filtering Detection AND MMS Notifications (MMS profile)</td>
<td>This message is sent to the client when, during the scan of the client’s m-send.req HTTP post request, multiple messages that were being sent to a mobile device were flagged as duplicates.</td>
</tr>
<tr>
<td>MM1 send request flood alert message</td>
<td>MMS Bulk Email Filtering Detection AND MMS Notifications (MMS profile)</td>
<td>This is sent when a mass MMS flood event is detected by FortiOS Carrier. This message is in an email format, with to, from and subject line included.</td>
</tr>
<tr>
<td>Replacement message list</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------</td>
<td>-----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>MM1 send-req banned word message</td>
<td>Banned Word Check (Email filter profile)</td>
<td>This message is sent to the client when, during the scan of the client’s m-send.req HTTP post request, banned words were found in multiple messages.</td>
</tr>
<tr>
<td>MM1 send-req flood message</td>
<td>Message flood threshold (MMS profile)</td>
<td>This message is sent to the client when, during the scan of the client’s m-send.req HTTP post request, multiple messages that were being sent to a mobile device were flagged as message floods.</td>
</tr>
<tr>
<td>MM1 send-req duplicate message</td>
<td>MMS Bulk Email Filtering Detection AND MMS Notifications (MMS profile)</td>
<td>This message is sent to the client when, during the scan of the client’s m-send.req HTTP post request, multiple messages that were being sent to a mobile device were flagged as duplicates.</td>
</tr>
<tr>
<td>MM1 send request flood alert message</td>
<td>MMS Bulk Email Filtering Detection AND MMS Notifications (MMS profile)</td>
<td>This is sent when a mass MMS flood event is detected by FortiOS Carrier. This message is in an email format, with to, from and subject line included.</td>
</tr>
</tbody>
</table>
Table 33: MM1 replacement messages (Continued)

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM1 send-conf carrier end point filter message</td>
<td>MMS Address Translation AND Carrier End Point Block (MMS profile)</td>
<td>This message is sent to notify the person that sent a message that it was blocked because the sender or recipient is banned. FortiOS Carrier determined that the content was not acceptable because the m-send-req messages contained blocked carrier end points.</td>
</tr>
<tr>
<td>MM1 send-conf content checksum block message</td>
<td>MMS Content Checksum (with the MMS content checksum list included in MMS profile)</td>
<td>This message is sent to notify the person that sent a message, that message was blocked because the actual message contains banned content. FortiOS Carrier determined that the content was not acceptable because the m-send-req messages contained content checksum blocked payloads.</td>
</tr>
<tr>
<td>MM1 send-conf flood message</td>
<td>MMS Bulk Email Filtering Detection AND MMS Notification (MMS profile)</td>
<td>This message is sent to notify the person that sent a message that it was blocked because the sender has been banned for sending too many messages. FortiOS Carrier determined that the content was not acceptable because the m-send-req messages were flagged as flood messages.</td>
</tr>
<tr>
<td>MM1 send-conf duplicate message</td>
<td>MMS Bulk Email Filtering Detection AND MMS Notifications (MMS profile)</td>
<td>This message is sent to notify the person that sent a message that it was blocked because the content within the message has been sent too many times. FortiOS Carrier determined that the content was not acceptable because the m-send-req messages were flagged as duplicate messages.</td>
</tr>
<tr>
<td>MM1 send-conf banned word message</td>
<td>Banned Word Check (Email Filter profile) AND MMS Notifications (MMS profile)</td>
<td>This message is sent to notify the person that sent a message that it was blocked because it contained a banned word. FortiOS Carrier determined that the content was not acceptable because the m-retrieve-conf messages contained a banned word.</td>
</tr>
</tbody>
</table>
Table 33: MM1 replacement messages (Continued)

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM1 send-conf virus message</td>
<td>Virus Scan (MMS profile)</td>
<td>This message is sent to notify the person that sent a message that is was infected with a virus. FortiOS Carrier determined that the content was not acceptable because the m-retrieve-conf message for retrieval contained a virus. FortiOS Carrier also quarantines the virus.</td>
</tr>
<tr>
<td>MM1 retrieve-conf virus message</td>
<td>File Filter (MMS profile)</td>
<td>This message is sent to notify the person that was retrieving the message, that it contained a file which contained a virus. FortiOS Carrier determined that the content was not acceptable because the m-retrieve-conf message for retrieval contained a virus. FortiOS Carrier also quarantines the file</td>
</tr>
<tr>
<td>MM1 retrieve-conf file block message</td>
<td>File Filter AND MMS Notifications (MMS Profile)</td>
<td>This message is sent to notify the person that was retrieving the message was blocked because it contains a banned file. FortiOS Carrier determined that the content was not acceptable because the m-retrieve-conf message contained a banned file. FortiOS Carrier also quarantines the file.</td>
</tr>
<tr>
<td>MM1 retrieve-conf carrier endpoint filter message</td>
<td>Carrier Endpoint Block AND MMS Notifications (MMS profile)</td>
<td>This message is sent to notify the person that was retrieving the message, that it was blocked because the sender or recipient is banned. FortiOS Carrier determined that the content was not acceptable because the m-retrieve-conf message contained blocked carrier end points.</td>
</tr>
<tr>
<td>MM1 retrieve-conf content checksum block message</td>
<td>MMS Content Checksum AND MMS Notifications (MMS profile)</td>
<td>This message is sent to notify the person that was retrieving the message, that is was blocked because it contained banned content. FortiOS Carrier determined that the content was not acceptable because the m-retrieve-conf message contained content checksum blocked payloads.</td>
</tr>
</tbody>
</table>
Table 33: MM1 replacement messages (Continued)

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM1 retrieve-conf flood message</td>
<td>MMS Bulk Email Filtering Detection AND MMS Notifications (MMS profile)</td>
<td>This message is sent to notify the person that was retrieving the message, that it was blocked because the sender was banned for sending too many messages. FortiOS Carrier determined that the content was not acceptable because the m-retrieve-conf message was flagged as flood.</td>
</tr>
<tr>
<td>MM1 retrieve-conf duplicate message</td>
<td>MMS Bulk Email Filtering Detection AND MMS Notifications (MMS profile)</td>
<td>This message is sent to notify the person that was retrieving the message, that it was blocked because the message content was sent too many times. FortiOS Carrier determined that the content was not acceptable because the m-retrieve-cof message contained blocked content.</td>
</tr>
<tr>
<td>MM1 retrieve-conf banned word message</td>
<td>Banned Word Check (Email filter profile) AND MMS Notifications (MMS profile)</td>
<td>This message is sent to notify the person that was retrieving the message, that it was blocked because it contained a banned word. FortiOS Carrier determined that the content was not acceptable because the m-retrieve-conf message contained a banned word.</td>
</tr>
</tbody>
</table>

**MM3 replacement messages**

MM3 replacement messages are sent when, during MMS content scanning, FortiOS Carrier detects, for example a virus, using the MMS profile. The replacement messages for MM3 are listed in Table 34.

You must have *Remove Blocked* selected within the MMS profile if you want to remove the content that is intercepted during MMS scanning on the unit.
### Table 34: MM3 replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM3 virus message</td>
<td>Virus Scan (MMS profile)</td>
<td>This message is sent when an MM3 message contains a virus. FortiOS Carrier quarantines the file.</td>
</tr>
<tr>
<td>MM3 file block message</td>
<td>File Filter (MMS profile)</td>
<td>This message is sent when an MM3 message contains a blocked file. FortiOS Carrier quarantines the file.</td>
</tr>
<tr>
<td>MM3 carrier end point filter message</td>
<td>Carrier End Point Block (MMS profile)</td>
<td>This message is sent when an MM3 message contains a banned sender or recipient is blocked by FortiOS Carrier.</td>
</tr>
<tr>
<td>MM3 content checksum block message</td>
<td>MMS Content Checksum (MMS profile)</td>
<td>This message is sent when an MM3 message contains banned contain and is blocked by FortiOS Carrier.</td>
</tr>
<tr>
<td>MM3 banned word message</td>
<td>Banned Word Check (Email Filter profile) AND MMS Notifications (MMS profile)</td>
<td>This message is sent when an MM3 message contains a banned word.</td>
</tr>
<tr>
<td>MM3 flood alert message</td>
<td>MMS Bulk Email Filtering Detection (MMS profile)</td>
<td>This message is sent when an MM3 message is scanned and found to have mass MMS flood. This replacement message is in the form of an email, containing from, to and subject lines.</td>
</tr>
<tr>
<td>MM3 duplicate alert message</td>
<td>MMS Bulk Email Filtering Detection (MMS profile)</td>
<td>This message is sent when an MM3 message is found to have duplicate messages. This message is in the form of an email, containing form, to, subject, and hash checksum.</td>
</tr>
<tr>
<td>MM3 virus notification message</td>
<td>Virus Scan AND MMS Notifications (MMS profile)</td>
<td>This message is sent when the mobile device sending messages are found to contain a virus.</td>
</tr>
<tr>
<td>MM3 file block notification message</td>
<td>File Filter AND MMS Notifications (MMS profile)</td>
<td>This message is sent when the mobile device sending the messages are found to contain banned files.</td>
</tr>
<tr>
<td>MM3 carrier end point filter notification message</td>
<td>Carrier End Point Block (MMS profile)</td>
<td>This message is sent when the mobile device has sent messages that contain a banned or recipient.</td>
</tr>
</tbody>
</table>
Table 34: MM3 replacement messages (Continued)

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM3 content checksum block notification message</td>
<td>MMS Content Checksum (MMS profile)</td>
<td>This message is sent when the mobile device has messages that contain banned content.</td>
</tr>
<tr>
<td>MM3 banned word notification message</td>
<td>Banned Word Check (Email Filter profile) AND MMS Notifications (MMS profile)</td>
<td>This message is sent when the mobile device has sent messages containing banned words.</td>
</tr>
<tr>
<td>MMS flood notification message</td>
<td>MMS Bulk Email Filtering Detection (MMS profile)</td>
<td>This message is sent when the mobile device has sent messages that were flagged as floods.</td>
</tr>
<tr>
<td>MM3 duplication notification message</td>
<td>MMS Bulk Email Filtering Detection (MMS profile)</td>
<td>This message is sent when the mobile device has sent messages that were flagged as duplicates.</td>
</tr>
</tbody>
</table>

MM4 replacement messages

MM4 replacement messages are sent when, during MMS content scanning, FortiOS Carrier detects, for example a virus, using the MMS profile. The replacement messages for MM1 are listed in Table 35.

Table 35: MM4 replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM4 virus message</td>
<td>Virus Scan (MMS profile)</td>
<td>This message is sent when the person has sent a message containing a file to a recipient, and that file was blocked because it contained a virus. FortiOS Carrier quarantines the file.</td>
</tr>
<tr>
<td>MM4 file block message</td>
<td>File Filter (MMS profile)</td>
<td>This message is sent when the person that has sent a message was blocked because it contains a banned file. FortiOS Carrier quarantines the file.</td>
</tr>
<tr>
<td>MM4 carrier end point filter message</td>
<td>Carrier End Point Block (MMS profile)</td>
<td>This message is sent when the message is blocked because the sender or recipient is banned.</td>
</tr>
<tr>
<td>MM4 content checksum block message</td>
<td>MMS Content Checksum (MMS profile)</td>
<td>This message is sent when the message is blocked because it contains banned content.</td>
</tr>
</tbody>
</table>
### Table 35: MM4 replacement messages (Continued)

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM4 flood message</td>
<td>MMS Bulk Email Filtering Detection (MMS profile)</td>
<td>This message is sent when a message is blocked because the sender is banned for sending too many messages.</td>
</tr>
<tr>
<td>MM4 duplicate message</td>
<td>MMS Bulk Email Filtering Detection (MMS profile)</td>
<td>This message is sent when that message is blocked. FortiOS Carrier blocked it because that message body was sent too many times.</td>
</tr>
<tr>
<td>MM4 banned word message</td>
<td>Banned Word Check (Email Filter profile) AND MMS Notifications (MMS profile)</td>
<td>This message is sent when a message is blocked. FortiOS Carrier blocked the message because it contains a banned word.</td>
</tr>
<tr>
<td>MM4 virus notification message</td>
<td>Virus Scan AND MMS Notifications (MMS profile)</td>
<td>This replacement message is sent when the mobile device has sent messages containing a virus.</td>
</tr>
<tr>
<td>MM4 file block notification message</td>
<td>File Filter AND MMS Notifications (MMS profile)</td>
<td>This message is sent when the mobile device has sent messages containing banned files.</td>
</tr>
<tr>
<td>MM4 carrier end point notification message</td>
<td>Carrier End Point Block AND MMS Notifications (MMS profile)</td>
<td>This message is sent when the mobile device has sent messages that contain a banned sender.</td>
</tr>
<tr>
<td>MM4 content checksum block notification message</td>
<td>MMS Content Checksum AND MMS Notifications (MMS profile)</td>
<td>This message is sent when the mobile device has sent message that contain banned content.</td>
</tr>
<tr>
<td>MM4 flood notification message</td>
<td>MMS Bulk Email Filtering Detection AND MMS Notifications (MMS profile)</td>
<td>This message is sent when the mobile device has sent messages that were flagged as floods.</td>
</tr>
<tr>
<td>MM4 duplication notification message</td>
<td>MMS Bulk Email Filtering Detection AND MMS Notifications (MMS profile)</td>
<td>This message is sent when the mobile device has sent messages that were flagged as duplicates.</td>
</tr>
<tr>
<td>MM4 banned word notification message</td>
<td>Banned Word Check (Email Filter profile) AND MMS Notifications (MMS profile)</td>
<td>This message is sent when the mobile device has sent messages that contain banned words.</td>
</tr>
</tbody>
</table>
Throughout MM4 flood alert message

MM4 flood alert message

MM4 duplicate alert message

Table 35: MM4 replacement messages (Continued)

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM4 flood alert message</td>
<td>MMS Bulk Email Filtering Detection (MMS profile)</td>
<td>This message is sent when a mass MMS flood is detected. This replacement message is in an email message format, with to, from and subject lines.</td>
</tr>
<tr>
<td>MM4 duplicate alert message</td>
<td>MMS Bulk Email Filtering Detection (MMS profile)</td>
<td>This message is sent when a mass MMS duplicates is detected. This replacement message is in an email message format, with to, from, subject, and hash checksum lines.</td>
</tr>
</tbody>
</table>

MM7 replacement messages

MM7 replacement messages are sent when, during MMS content scanning, FortiOS Carrier detects, for example a virus, using the MMS profile. The replacement messages for MM7 are listed in Table 36.

Table 36: MM7 replacement messages

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM7 virus message</td>
<td>Virus Scan (MMS profile)</td>
<td>This message is sent when a person has sent a message and FortiOS Carrier blocked the message because it contained a virus. FortiOS Carrier quarantines the file.</td>
</tr>
<tr>
<td>MM7 file block message</td>
<td>File Filter (MMS profile)</td>
<td>This message is sent when a person has sent a message and FortiOS Carrier blocked the message because it contained a banned file. FortiOS Carrier quarantines the file.</td>
</tr>
<tr>
<td>MM7 carrier end point filter message</td>
<td>Carrier End Point Block (MMS profile)</td>
<td>This message is sent when FortiOS Carrier detected that the message sent contained a banned sender or recipient. The message was blocked by FortiOS Carrier.</td>
</tr>
<tr>
<td>MM7 content checksum block message</td>
<td>MMS Content Checksum (MMS profile)</td>
<td>This message is sent when FortiOS Carrier detected that the message contained banned content. The message was blocked by FortiOS Carrier.</td>
</tr>
<tr>
<td>MM7 banned word message</td>
<td>Banned Word Check (Email Filter profile)</td>
<td>This message is sent when a message that a person sent was blocked because it contains a banned word.</td>
</tr>
</tbody>
</table>
Table 36: MM7 replacement messages (Continued)

<table>
<thead>
<tr>
<th>Replacement Message name</th>
<th>Enabled options/settings that triggers the replacement message</th>
<th>Reason for sending or displaying the replacement message</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM7 virus notification message</td>
<td>Virus Scan AND MMS Notifications (MMS profile)</td>
<td>This replacement message is sent when the mobile device has sent messages that contain a virus.</td>
</tr>
<tr>
<td>MM7 file block notification message</td>
<td>File Filter AND MMS Notifications (MMS profile)</td>
<td>This message is sent when the mobile device has sent messages containing banned files.</td>
</tr>
<tr>
<td>MM7 carrier end point filter notification message</td>
<td>Carrier End Point Block AND MMS Notifications (MMS profile)</td>
<td>This message is sent when the mobile device has sent messages that contain a banned sender or recipient.</td>
</tr>
<tr>
<td>MM7 content checksum block notification message</td>
<td>MMS Content Checksum AND MMS Notifications (MMS profile)</td>
<td>This message is sent when the mobile device has sent messages that contain banned content.</td>
</tr>
<tr>
<td>MM7 banned word notification message</td>
<td>Banned Word Check (Email Filter profile) AND MMS Notifications (MMS profile)</td>
<td>This message is sent when the mobile device sent message containing banned words.</td>
</tr>
<tr>
<td>MM7 flood notification message</td>
<td>MMS Bulk Email Filtering Detection AND MMS Notifications (MMS profile)</td>
<td>This message is sent when the mobile device sent messages that were flagged as flood.</td>
</tr>
<tr>
<td>MM7 duplicate notification message</td>
<td>MMS Bulk Email Filtering Detection AND MMS Notifications (MMS profile)</td>
<td>This message is sent when the mobile device has sent message that were flagged as duplicates.</td>
</tr>
<tr>
<td>MM7 flood alert message</td>
<td>MMS Bulk Email Filtering Detection (MMS profile)</td>
<td>This message is sent when a mass MMS flood is detected. This replacement message is in an email message format, with to, from and subject lines.</td>
</tr>
<tr>
<td>MM7 duplicate alert message</td>
<td>MMS Bulk Email Filtering Detection (MMS profile)</td>
<td>This message is sent when a mass MMS duplicates is detected. This message is in an email message format, with to, form, subject, and hash checksum lines.</td>
</tr>
</tbody>
</table>

**MMS replacement messages**

The MMS replacement message is sent when a section of an MMS message has been replaced because it contains a blocked file. This replacement message is in HTML format.
The message text is:

<HTML><BODY>This section of the message has been replaced because it contained a blocked file</BODY></HTML>

Replacement message groups

You configure the default replacement message group from System > Config > Replacement Message Group in FortiOS Carrier. All new replacement message groups that you add inherit from the default group. Modifying messages in the default group automatically changes any messages that are unmodified in the other groups.

If you enable virtual domains (VDOMs) on the FortiGate unit, replacement message groups are configured separately for each virtual domain. Each virtual domain has its own default replacement message group, configured from System > Config > Replacement Message Group.

When you modify a message in a replacement message group, a Reset icon appears beside the message in the group. You can select this Reset icon to reset the message in the replacement message group to the default version.

All MM1/4/7 notification messages (and MM1 retrieve-conf messages) can contain a SMIL layer and all MM4 notification messages can contain an HTML layer in the message. These layers can be used to brand messages by using logos uploaded to the FortiGate unit via the 'Manage Images' link found on the replacement message group configuration page.

Disk

To view the status and storage information of the local disk on your FortiGate unit, go to System > Config > Advanced. The Disk menu appears only on FortiGate units with an internal hard or flash disk.

Formatting the disk

The internal disk of the FortiGate unit (if available) can be formatted by going to System > Config > Disk and selecting Format.

Formatting the disk will erase all data on it, including databases for antivirus and IPS; logs, quarantine files, and WAN optimization caches. The FortiGate unit requires a reboot once the disk has been formatted.

Setting space quotas

If the FortiGate unit has an internal hard or flash disk, you can allocate the space on the disk for specific logging and archiving, and WAN optimization. By default, the space is used on an as required basis. As such, a disk can fill up with basic disk logging, leaving less potential space for quarantine.

By going to System > Config > Disk, you can select the Edit icon for Logging and Archiving and WAN Optimization & Web Cache and define the amount of space each log, archive and WAN optimization has on the disk.

CLI Scripts

To upload bulk CLI commands and scripts, go to System > Config > Advanced.
Scripts are text files containing CLI command sequences. Scripts can be used to deploy identical configurations to many devices. For example, if all of your devices use identical security policies, you can enter the commands required to create the security policies in a script, and then deploy the script to all the devices which should use those same settings.

Use a text editor such as Notepad or other application that creates simple text files. Enter the commands in sequence, with each line as one command, similar to examples throughout the FortiOS documentation set.

If you are using a FortiGate unit that is not remotely managed by a FortiManager unit or the FortiGuard Analysis and Management Service, the scripts you upload are executed and discarded. If you want to execute a script more than once, you must keep a copy on your management PC.

If your FortiGate unit is configured to use a FortiManager unit, you can upload your scripts to the FortiManager unit, and run them from any FortiGate unit configured to use the FortiManager unit. If you upload a script directly to a FortiGate unit, it is executed and discarded.

If your FortiGate unit is configured to use FortiGuard Analysis and Management Service, scripts you upload are executed and stored. You can run uploaded scripts from any FortiGate unit configured with your FortiGuard Analysis and Management Service account. The uploaded script files appear on the FortiGuard Analysis and Management Service portal web site.

**Uploading script files**

After you have created a script file, you can then upload it through System > Config > Advanced. When a script is uploaded, it is automatically executed.

| Commands that require the FortiGate unit to reboot when entered in the command line will also force a reboot if included in a script. |

**To execute a script**

1. Go to System > Config > Advanced.
2. Verify that Upload Bulk CLI Command File is selected.
3. Select Browse to locate the script file.
4. Select Apply.

If the FortiGate unit is not configured for remote management, or if it is configured to use a FortiManager unit, uploaded scripts are discarded after execution. Save script files to your management PC if you want to execute them again later.

If the FortiGate unit is configured to use the FortiGuard Analysis and Management Service, the script file is saved to the remote server for later reuse. You can view the script or run it from the FortiGuard Analysis and Management Service portal web site.
Rejecting PING requests

The factory default configuration of your FortiGate unit allows the default external interface to respond to ping requests. Depending on the model of your FortiGate unit the actual name of this interface will vary. For the most secure operation, you should change the configuration of the external interface so that it does not respond to ping requests. Not responding to ping requests makes it more difficult for a potential attacker to detect your FortiGate unit from the Internet. One such potential threat are Denial of Service (DoS) attacks.

A FortiGate unit responds to ping requests if ping administrative access is enabled for that interface.

To disable ping administrative access - web-based manager

1. Go to System > Network > Interface.
2. Choose the external interface and select Edit.
3. Clear the Ping Administrative Access check box.
4. Select OK.

In the CLI, when setting the allowaccess settings, by selecting the access types and not including the PING option, that option is then not selected. In this example, only HTTPS is selected.

To disable ping administrative access - CLI

```
config system interface
edit external
 set allowaccess https
end
```

Opening TCP 113

Although seemingly contrary to conventional wisdom of closing ports from hackers, this port, which is used for ident requests, should be opened.

Port 113 initially was used as an authentication port, and later defined as an identification port (see RFC 1413). Some servers may still use this port to help in identifying users or other servers and establish a connection. Because port 113 receives a lot of unsolicited traffic, many routers, including on the FortiGate unit, close this port.

The issue arises in that unsolicited requests are stopped by the FortiGate unit, which will send a response saying that the port is closed. In doing so, it also lets the requesting server know there is a device at the given address, and thus announcing its presence. By enabling traffic on port 113, requests will travel to this port, and will most likely, be ignored and never responded to.

By default, the ident port is closed. To open it, use the following CLI commands:

```
config system interface
edit <port_name>
 set inden_accept enable
end
```

You could also further use port forwarding to send the traffic to a non-existent IP address and thus never have a response packet sent.
Obfuscate HTTP headers

The FortiGate unit can obfuscate the HTTP header information being sent to external web servers to better cloak the source. By default this option is not enabled. To obfuscate HTTP headers, use the following CLI command:

```bash
config system global
 set http-obfuscate {none | header-only | modified | no-error}
end
```

Where:
- `none` — do not hide the FortiGate web server identity.
- `header-only` — hides the HTTP server banner.
- `modified` — provides modified error responses.
- `no-error` — suppresses error responses.
Index

Symbols
_email, 48
 fqdn, 48
_index, 48
_int, 48
_ipv4, 48
_ipv4/mask, 48
_ipv4mask, 48
_ipv4range, 48
_ipv6, 48
_ipv6mask, 48
_name, 48
_pattern, 48
_str, 48
_v4mask, 48
_v6mask, 48

Numerics
3DES, 44
802.1Q, 205, 209, 212
802.3ad, 277

A
abort, 51
access controls, 52
adding
default route, 67
DHCP relay agent, 272
SNMP community, 136
adding, configuring defining
administrator password, 75
administrator settings, 85
backing up configuration, 28
changing administrator’s password, 30
dashboards, 23
DHCP server, 270
firmware version, 27
formatting USB disks, 28
general system settings, 85
LDAP authentication for administrators, 80
manually updating FortiGuard definitions, 31
password authentication, 75
password, administrator, 75
PKI authentication, administrators, 81
RADIUS authentication, administrators, 79
RAID disk, 37
replacement message images, 287
replacement messages, 287
restoring configuration, 29
synchronizing with NTP server, 27
system configuration backup and restore, FortiManager, 29
system time, 26
TACACS+ authentication, 80
text strings (names), 21
uploading scripts, 319
widgets, 23
Address Resolution Protocol (ARP), 233
admin
administrator account, 39
password, 74
password length, 76
administration
schools, 279
administrative access changing, 40
administrative interface. See web-based manager administrator
account, 39
lockout, 77
password, 39
administrator profiles
global, 82
vdom, 82
administrator settings, 85
administrators
LDAP authentication, 80
management access, 76
monitoring See also widgets
viewing list, 75
Agent, sFlow, 126
aggregate interfaces, 277
air flow, 107
alert message console
viewing, 32
ambient temperature, 107
antivirus updates, 116
manual, 31
ASCII, 55
asymmetric routing, 235
attack updates
manual, 31
scheduling, 116
authenticating
L2TP clients, 248
PPTP clients, 239
authentication
PKI certificate, administrators, 81
RADIUS for administrators, 79
SCP, 89
authentication server, external
for L2TP, 248
for PPTP, 239
authorization, LDAP, 83
auto-install, 94

B
backing up configuration
See widgets, system information
backup and restore configuration, central management, 29
backup configuration
SCP, 87
USB, 98
baud rate, 58
bits per second (bps), 42
Blowfish, 44
boot interrupt, 41
Boot Strap Router (BSR), 173
border gateway protocol (BGP). See routing, BGP
broadcast
domains, 205
storm, 232

C
case sensitivity
Perl regular expressions, 59
central management
backup and restore configuration, 29
certificate, security, 62
changing unit's host name, 25
CHAP, 237
CIDR, 48
Cisco
router configuration, 216, 231
switch configuration, 216, 222, 230
CLI, 17
connecting, 41
connecting to from the web-based manager, 40
connecting to the, 41
Console widget, 43
upgrading the firmware, 93
CLI console, 35
CNAME, 275
collector agent, sFlow, 126
column settings
configuring, 19
command, 46
abbreviation, 54
completion, 53
help, 53
multi-line, 53
configuration
FortiExplorer, 63
configuration lock, 104
configuration revisions, 90
configure
DNS, 66, 69
FortiGuard, 73
interfaces, 64
restore, 89
connecting
to the CLI using SSH, 44
to the CLI using Telnet, 45
to the console, 42
web-based manager, 61
conservation mode, 142
conserve mode, 33
console, 42
controlled upgrade, 100
conventions, 45
cp1252, 56
Cross-Site Scripting
protection from, 21

dashboards
adding, 23
date and time, 72
DB-9, 42
DCE-RPC, 255
dcerps
session helper, 255
default route, 67, 215
VLAN, 215
definitions, 45
delete, shell command, 50
dense mode, 174
Designated Routers (DRs), 173
DHCP
IP reservation, 272
servers and relays, 270
service, 272
diagnostics, tracert, 223
disabling, 254
disk status, viewing, 318
Distributed Computing Environment Remote Procedure Call (DCE-RPC), 255
DLP archive
viewing, 34
DNS, 255, 274
CNAME, 275
external servers, 274
loal domains, 274
override, 65
public, 275
recursive, 276
server
server, DNS, 275
shadow, 275
slave, 275
split, 276
DNS master, 275
dns-tcp, session helper, 255
dns-udp, session helper, 255
domain name server, 274
configure, 69
domain name server, configure, 66
dotted decimal, 48
downloading firmware, 91
dual internet connection, 261
dual WAN
link redundancy, 261
load sharing, 264
duplicate MAC, 233

E
earthing, 109
edit, shell command, 50
direction in an edit shell, 51
direction, shell command, 50
Endpoint Mapper (EPM), 255
entering text strings (names), 21
environment variables, 54
escape sequence, 54
execute shutdown, 109

F
field, 46
File transfer protocol (FTP), 256
filter
filtering information on web-based manager lists, 18
web-based manager lists, 18
firewall IP addresses, defining L2TP, 248
firewall policies
see security policies, 67
firmware
backup and restore from USB, 98
download, 91
from system reboot, 96
installing, 96
revert from CLI, 95
reverting with web-based manager, 91
testing before use, 98
testing new firmware, 98
upgrade from CLI, 93
upgrade with web-based manager, 91
upgrading using the CLI, 93
flow control, 42
formatting USB disks, 28
FortiExplorer, 62
configuration, 63
updates, 63
FortiGuard, 73
manually configuring definition updates, 31
push update, 115, 116, 117
FortiGuard definitions
manually updating, 31
FortiGuard Services
analysis service options, 114
licenses, 30
management and analysis service options, 114
support contract, 114
web filtering and antispam options, 119
FortiGuard services, 31
FortiGuard, backup and restore configuration, 29
FortiManager
remote backup and restore options, 29
Fortinet MIB, 138, 143
fully qualified domain name (FQDN), 48

G
gateway, 67
GB2312, 56
Generic Routing Encapsulation (GRE), 237
get
edit shell command, 51
shell command, 50
gigahertz interfaces, SNMP, 136
graphical user interface. See web-based manager
grounding, 108
GUI. See web-based manager

H
H.245, 256
h245I session helper, 256
H323, session helper, 256
help
navigating using keyboard shortcuts, 20
searching the online help, 20
using FortiGate online help, 19
host name, 25
HTTPS, 17, 76
humidity, 107

I
ID tag, 206, 209
idle timeout
changing for the web-based manager, 40
IEEE 802.1Q, 205, 209
iHighSpeed, 136
IF-MIB.ifSpeed, 136
IGMP
RFC 1112, 174
RFC 2236, 174
RFC 3376, 174
indentation, 47
index number, 48
Initial Disc Timeout, 65
interface
802.1Q trunk, 212, 222
configuring, 64
external, VLAN NAT example, 217
external, VLAN NAT/Route example, 217
maximum number, 205, 235
VLAN subinterface, 212, 213, 216, 218, 222
interfaces
aggregate, 277
International characters, 55
IP address
multicasting, 175
overlapping, 213
IP reservation, 272
IPX, layer-2 forwarding, 232
ISO 8859-1, 56
K
K-12, 279
key, 44
keyboard shortcut
  online help, 20

L
L2TP VPN
  authentication method, 248
  configuration steps, 247
  enabling, 248
  firewall IP addresses, defining, 248
  infrastructure requirements, 247
  network configuration, 246
  security policy, defining, 249
  VIP address range, 248
language
  changing the web-based manager language, 39
layer-2, 206, 209, 212
  example, 206
  forwarding, 232
  frames, 206
layer-3, 209
  packets, 206
LDAP authorization, 83
LDAP server, external
  for L2TP, 248
  for PPTP, 239
length, 76
length, password, 76
licenses
  viewing, 30
line endings, 58
link redundancy, 261
lists
  using web-based manager, 18
load sharing, 264
local console access, 41
local domain name, 274
locking configuration, 104
lockout
  administrator, 77
logging out
  web-based manager, 40
login
  restricting unwanted, 77
lost password
  recovering, 39

M
MAC address, 233
maintenance
  configuration revision, 92
  disk, 318
management access, 76
Management Information Base (MIB), 133
management IP, 69
management IP address
  changing, 26
master DNS server, 275
memory, 236
merge interfaces, 284
MGCP, 257
  session helper, 257
MIB, 143
  FortiGate, 138
  RFC 1213, 138
  RFC 2665, 138
Microsoft Point-to-Point Encryption (MPPE), 238
modem, 267
routing, 270
modem modes, 268
monitoring
  administrators, 30
  DHCP, 273
  RAID, 35
more, 58
MS RPC, 255
multicast
  dense mode, 174
  IGMP, 174
  RFC 3973, 173
  RFC 4601, 173
multicast-enable command, 178
multicasting
  debugging example, 186
  enabling, 178
  IP addresses, 175
  RIPv2, 176
  security policies, 177
multi-line command, 53
multiple pages, 58

N
NAT
  port translation (NAT-PT), 258
  VLAN example, 218
NAT mode, 25
NetBIOS, for Windows networks, 234
network instability, 233
Network Time Protocol server (NTP), 27
next, 51
NTP server, 72
null modem, 42, 43

O
object, 46
object identifier (OID), 143
ONC-RPC, 255, 257
online help
  content pane, 19
  keyboard shortcuts, 20
  navigation pane, 20
  search, 20
  using FortiGate online help, 19
open shortest path first (OSPF). See routing, OSPF
Open Systems Interconnect (OSI), 206
operating temperature, 107
operation mode, 26
option, 46

P
packet header, 126
packets
  layer-3 routing, 209
  VLAN-tagged, 213
PADT timeout, 65
page controls
  web-based manager, 18
paging, 58
PAP, 237
parity, 42
password, 76
  changing, administrator, 30
  configuring authentication, 75
  recovering lost password, 39
password, changing, 74
pattern, 48
Perl regular expressions, using, 59
permissions, 52
ping server, 262, 269
pmap
  session helper, 257
Point-to-Point Tunneling Protocol (PPTP), 237
policies
  multicast, 177
port 47, 257
port, session helper, 252
power off, 109
PPTP
  external server, 242
  layer-2 forwarding, 232
  session helper, 257
PPTP VPN
  authentication method, 239
  configuring pass through, 242
  enabling, 240
  FortiGate implementation, 237
  security policy, defining, 241
  VIP address range, 240
Protocol Independent Multicast (PIM), 173
protocol, session helper, 252
publis DNS server, 275
purge, shell command, 51
push update, 115, 116
override, 117

R
RADIUS server, external
  for L2TP, 248
  for PPTP, 239
RAS, session helper, 256
read & write access level
  administrator account, 27
read only access level
  administrator account, 28
reboot, upgrade, 100
recursive DNS, 276
redundant interfaces, 261
redundant mode, 268
Registration, Admission, and Status (RAS), 256
regular expression, 48
relay
  DHCP, 270
  relay, DHCP, 272
remote administration, 76
remote client, L2TP VPN, 249
remote FortiManager options, 29
remote shell, 259
rename, shell command, 51
Rendezvous Points (RPs), 173
replacement message group, 318
replacement messages
  administration, 298
  alert mail, 296
  captive portal default, 302
  endpoint NAC, 304
  FortiGuard web filtering, 302
  FTP, 295
  FTP proxy, 295
  HTTP, 291
  IM, P2P, 303
  images, 287
  mail, 290
  MM1, 307
  MM3, 312
  MM4, 314
  MM7, 316, 317
  modifying, 287
  NAC quarantine, 305
  NNTP, 295
  spam, 297
  SSL VPN, 307
  tags, 288
  traffic quota control, 307
  user authentication, 299
  viewing, 286
  web proxy, 293
reserved characters, 54
reserving addresses, 272
restore, 89
restoring configuration See widgets
restricting login attempts, 77
reverting firmware, 91
revisions, 90
RFC
  1213, 133, 138
  1215, 141
  2665, 133, 138
  1112, 174
  2236, 174
  3376, 174
  3973, 173
  4601, 173
RIPv2, 176
RJ-45, 42
RJ-45-to-DB-9, 42, 43
Index

routing
- asymmetric, 235
- BGP, 215
- modem, 270
- OSPF, 215
- RIP, 215
- STP, 235
routing information protocol (RIP). See routing, RIP
routed, default, 215
rsh, session helper, 259
RTSP, session helper, 259

S
schedule
- antivirus and attack definition updates, 116
school administration, 279
SCP
- authentication, 89
- backup configuration, 87
- client application, 88
- restore configuration, 89
- SSH access, 88
screen resolution
- minimum recommended, 17
scripts
- uploading, 319
search
- online help, 20
  - online help wildcard, 20
Secure Shell (SSH)
- key, 44
security certificate, 62
security IP addresses
- defining L2TP, 248
security policies, 67
- multicast, 177
security policy
- defining L2TP, 248, 249
- defining PPTP, 241
VLAN, 215
VLAN example, 219
VLAN transparent mode, 225, 228
serial communications (COM) port, 42
server
- DHCP, 270
service, DHCP, 272
session helper, 251, 254, 255, 256, 257, 259, 260
- changing the configuration, 252
dcerpc, 255
DNS, 255
H.245, 256
h245O, 256
h323, 256
mgcp, 257
pmap, 257
port, 252
PPTP, 257
protocol, 252
ras, 256
rsh, 259
rtsp, 259
sip, 260
TFTP, 260
tns, 260
- viewing, 251
session-helper, 252
set, 52
setting administrative access for SSH or Telnet, 42
settings, 85
- administrators, 85
setup wizard, 62
sFlow, 126
shadow DNS server, 275
shell command
- delete, 50
- edit, 50
- end, 50
- get, 50
- purge, 51
- rename, 51
- show, 51
shielded twisted pair, 108
Shift-JIS, 56
show, 52
- shell command, 51
- shut down, 109
signatures, update, 73
SIP, session helper, 260
slave DNS server, 275
SNMP
- configuring community, 136
- get command, 140
- gigabit interfaces, 136
- manager, 133, 136
- MIB, 143
- MIBs, 138
- queries, 135, 137
- RFC 12123, 138
- RFC 1215, 141
- RFC 2665, 138
- traps, 140
- v3, 133, 134
SNMP Agent, 133
soft switch, 284
Spanning Tree Protocol (STP), 232, 235
special characters, 54, 55
split DNS, 276
SQLNET
- session helper, 260
SSH, 42, 44, 76
- key, 44
- standalone mode, 268
- static route, 67
- STP, forwarding, 235
- string, 48
- sub-command, 46, 49
- subinterface
- VLAN NAT/Route, 213
switch, 284
switching vdoms, 40
syntax, 45
system idle timeout, 76
- system reboot, installing, 96
system resources
   viewing, 32
system time
   configuring, 26
system, session-helper, 252

T
   table, 46
   TACACS+ server
      authentication, 80
tags
   replacement messages, 288
TCP
   port 111, 252
   port 135, 255
   port 1720, 252
   port 1723, 252, 258
   port 21, 256
   port 512, 252
   port 514, 252
Telnet, 42, 45
testing
   VDOM transparent mode, 231
   VLAN, 223
text strings (names), 21
TFTP server, 96
TFTP, session helper, 260
time
   and date, 72
   configuring, 26
   NTP, 72
   protocol, 72
   zone, 72
TNS, 260
tns
   session helper, 260
top sessions
   viewing, 35
tracert, 223
transparent mode, 25, 223
management IP address, 26
security policy, 225, 228
VDOM example, 227, 230, 231
VLAN example, 226
VLAN subinterface, 224
traps, SNMP, 140
trunk
   interface, 212, 222
   links, 206

U
UDP
   port 111, 252
   port 135, 255
   port 1719, 256
   port 2427, 257
   port 2727, 257
Unicode, 56
unit operation
   viewing, 32
universal unique identifier (UUID), 255
unknown action, 46
unnumbered IP, 65
unset, 52
unwanted login attempts, 77
update signatures, 73
updates
   FortiExplorer, 63
   upgrading
      antivirus and IPS, web-based manager, 73
upgrade after reboot, 100
upgrading, firmware using the CLI, 93
uploading scripts, 319
USB
   auto-install, 94
   backup, 98
USB disks, formatting, 28
using the CLI, 41
UTF-8, 56

V
value, 46
VDOM
   limited resources, 236
   maximum interfaces, 205, 235
   transparent mode, 223
domains, switching, 40
viewing
d L2TP clients, 248
PPTP clients, 240
VIP address
   L2TP clients, 248
   PPTP clients, 240
VLAN
   application, 205
   maximum number, 205, 235
   security policy, 215
   subinterface, 212, 213, 216, 218, 222
   tagged packets, 213
   transparent mode, 223
VLAN ID, 209
   range, 206
   tag, 206
VLAN subinterface
   transparent mode, 224
   VDOM transparent mode example, 227
   VLAN NAT example, 218
   VLAN NAT/Route example, 218
VoIP, 257
VPN, configuring L2TP, 247
vulnerability
  Cross-Site Scripting, 21
  XSS, 21

W
widgets
  unit operation, 32
web filtering service, 289
web site, content category, 288
Web UI. See web-based manager
web-based manager, 17, 61
  changing the language, 39
  connecting to the CLI, 40
  idle timeout, 40
  logging out, 40
  online help, 19
  pages, 17
  screen resolution, 17
  using web-based manager lists, 18
web-based manager, lock, 104
web-based manager, switching vdoms, 40
widgets, 29
  adding, 23
  alert message console, 32
  CLI console, 35
  disk storage, 38
  IM usage, 39
  licence information, 30
  log and archive statistics, 33
  network protocol usage, 39
  P2P usage, 38
  per-IP bandwidth usage, 39
  RAID monitor, 35
  session history, 35
  system information, 23
  system resources, 32
  top application usage, 38
  top history, 35
  top sessions, 35
  VoIP usage, 39
wild cards, 48
  wildcard
  online help search, 20
  wildcard pattern matching, 59
Windows networks
  enabling NetBIOS, 234
  WINS, 234
wizard, 62
word boundary, Perl regular expressions, 59

X
XSS vulnerability
  protection from, 21