VLANs

Virtual Local Area Networks (VLANs) multiply the capabilities of your FortiGate unit and can also provide added network security. VLANs use ID tags to logically separate devices on a network into smaller broadcast domains. These smaller domains forward packets only to devices that are part of that VLAN domain. This reduces traffic and increases network security.

VLANs in NAT mode

In NAT mode, the FortiGate unit functions as a layer-3 device. In this mode, the FortiGate unit controls the flow of packets between VLANs and can also remove VLAN tags from incoming VLAN packets. The FortiGate unit can also forward untagged packets to other networks such as the Internet.

In NAT mode, the FortiGate unit supports VLAN trunk links with IEEE 802.1Q‑compliant switches or routers. The trunk link transports VLAN-tagged packets between physical subnets or networks. When you add VLAN subinterfaces to the FortiGate's physical interfaces, the VLANs have IDs that match the VLAN IDs of packets on the trunk link. The FortiGate unit directs packets with VLAN IDs to subinterfaces with matching IDs.

You can define VLAN subinterfaces on all FortiGate physical interfaces. However, if multiple virtual domains are configured on the FortiGate unit, you only have access to the physical interfaces on your virtual domain. The FortiGate unit can tag packets leaving on a VLAN subinterface. It can also remove VLAN tags from incoming packets and add a different VLAN tag to outgoing packets.

Normally in VLAN configurations, the FortiGate unit's internal interface is connected to a VLAN trunk, and the external interface connects to an Internet router that is not configured for VLANs. In this configuration, the FortiGate unit can apply different policies for traffic on each VLAN interface connected to the internal interface, which results in less network traffic and better security.

Sample topology

In this example, two different internal VLAN networks share one interface on the FortiGate unit and share the connection to the Internet. This example shows that two networks can have separate traffic streams while sharing a single interface. This configuration can apply to two departments in a single company or to different companies.

There are two different internal network VLANs in this example. VLAN_100 is on the 10.1.1.0/255.255.255.0 subnet, and VLAN_200 is on the 10.1.2.0/255.255.255.0 subnet. These VLANs are connected to the VLAN switch.

The FortiGate internal interface connects to the VLAN switch through an 802.1Q trunk. The internal interface has an IP address of 192.168.110.126 and is configured with two VLAN subinterfaces (VLAN_100 and VLAN_200). The external interface has an IP address of 172.16.21.2 and connects to the Internet. The external interface has no VLAN subinterfaces.

When the VLAN switch receives packets from VLAN_100 and VLAN_200, it applies VLAN ID tags and forwards the packets of each VLAN both to local ports and to the FortiGate unit across the trunk link. The FortiGate unit has policies that allow traffic to flow between the VLANs, and from the VLANs to the external network.

Sample configuration

In this example, both the FortiGate unit and the Cisco 2950 switch are installed and connected and basic configuration has been completed. On the switch, you need access to the CLI to enter commands. No VDOMs are enabled in this example.

General configuration steps include:

  1. Configure the external interface.
  2. Add two VLAN subinterfaces to the internal network interface.
  3. Add firewall addresses and address ranges for the internal and external networks.
  4. Add security policies to allow:
    • the VLAN networks to access each other.
    • the VLAN networks to access the external network.
To configure the external interface: